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Presentation of (glyco)peptides by the class Il major histocompatibility complex moleéuie 1A cells

plays a central role in collagen-induced arthritis, an animal model for the autoimmune disease rheumatoid
arthritis. A peptide library was designed using statistical molecular design in amino acid space in which
five positions in the minimal mouse collagen type Il binding epitope CH2B87 were varied. A substantially
reduced peptide library of 24 peptides with diverse and representative molecular characteristics was selected,
synthesized, and evaluated for the binding strength®toAAmultivariate QSAR model was established by
correlating calculated descriptors, compressed to its principle properties, with the binding data using partial
least-square regression. The model was successfully validated by an external test set. Interpretation of the
model provided a molecular property binding motif for peptides interacting WitiT Ae information may

be useful in future research directed toward new treatments of rheumatoid arthritis.

Introduction autoreactive T celfs1°and antibodi€/d—13 directed against type

Il collagen (ClI), which is the most abundant protein in cartilage.
Injection of ClIl in ratd* or mice*® provokes the development

of collagen-induced arthritis (CIA) with symptoms and histo-

pathology similar to those of RA. CIA is the most commonly

The immune system’s ability to distinguish self from nonself
is a crucial feature of the body’s defenses against foreign
antigens. This ability is linked to a ternary complex in which T

_ceIIs play a key role "? the activation or nonactivation of th_e used animal model for RA, and susceptibility to murine CIA is
immune system. Foreign and autoantigens are degraded iNtQiked to the mouse MHC class Il moleculdl 17 By use of

peptides by af“‘ge.” presenting_ (_:ells and subsequently presente ynthetic peptides, the minimal CII peptide epitope required for
by class Il major histocompatibility complex (MHmolecules o hinding to the Amolecule and inducing a T-cell response
for recognltlon by T-cell re(_:eptors. This recognition constltutes has been determined to be the octapeptide ranging from amino
an important step in a series of events that forms the immune ;4 260 to amino acid 267 (CI26@67, Figure 1)8 The
response to foreign antigens. The self-peptide MHC complexesjgqjacine at position 260 and phenylalanine 263 have been
should not lead to any response, and when this tolerance iS¢y nqg to be essential anchor residues for binding to the A
disrupted, an immune response toward endogenous tissue(s) igyolecule, according to an alanine sé&A? Furthermore, it has
elicited and an autoimmune inflammatory disease, such aspeen shown that the T-cell response is often linked to specific
rheumatoid arthritis (RA), may develop. recognition of a carbohydrate moiety resulting from post-
RA is one of the most common autoimmune inflammatory translational modification of lysine at ClI2644p-galactopy-
diseases and is characterized by chronic inflammation of ranosyl modified hydroxylysine, i.e., a GalHyl moief#).24In
peripheral cartilaginous joints. The symptoms include swelling, some cases, the T-cell recognition is not linked solely to the
stiffness, and pain in the joints and subsequent erosion of sugar moiety but also to the glutamic acid located at position
underlying bones, which might further lead to deformity and Cl126625 Highly interesting results have shown that vaccination
malfunction of the joint3.A large number of therapeutic agents  of mice with the mouse and rat galactosylated Cl12283
against RA are commercially available, but there is no cure and peptides can provide protection against development of €IA.
most treatments do not inhibit the progression of the diseaseln particular, vaccination by the rat glycopeptide complexed
satisfactorily? The major difficulties hindering the development with the A% molecule significantly retarded progression of the
of effective treatments for RA seem to be the complexity of disease and reduced its severity in mice with ongoing chronic
the system, lack of knowledge of the mechanisms involved, and relapsing arthritig’ These findings indicate that analyses with
the need for reliable disease modetsRA has been linked to  variants of the CII glycopeptide could be very useful for
the MHC class Il molecules DR1 and DR#, and the activated ~ exploring the tricomponent #glycopeptide/T-cell receptor
immune systems of severely affected RA patients include both interactions and could facilitate the development of potential
drug or vaccine candidates for treating RA.
*To whom correspondence should be addressed. Pherés-90- W_hile the _carbohydrate specifi_city ha_s been extensively
7866890. Fax:+46-90-138885. E-mail: anna.linusson@chem.umu.se.  studied, less is known about the interactions between the A
I lLJmZéUUniversity- molecule and the peptide ligand in the ternary complex. Besides
§Ag?raZe':1"e’§;S'ng&D Mindal. the proposed anchoring positions (lle260 and Phe263), the
a Abbreviations: MHC, major histocompatibility complex; RA, rheu-  introduction of a methylene ether amide bond mimetic between
matoid arthritis; ClI, type Il collagen; CIA, collagen-induced arthritis;  amino acids [1e260 and Ala261 in the minimal T-cell epitope
GalHyl, p-p-galactopyranosyl modified hydroxylysine; SMD, statistical  |1260—267 resulted in a substantial drop (20-fold) in peptide

molecular design; QSAR, quantitative structueetivity relationship; PCA, L. o5 .
principle component analysis; PLS, partial least-squares projections to latentaffinity for A9.2> Moreover, Jane-wit et al. have postulated a

structures; DA, discriminant analysis. common autoimmune-motif (KXXS) for peptides binding to
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Figure 1. Schematic illustration of the ternary complex of the collagen
glycopeptide CII1266-267 presented by the mouse MHC class I
molecule A to the T-cell receptor. The peptide is anchored to the A
molecule with 11260 in the P1 pocket and Phe263 in the P4 pocket.
The arrows indicate the amino acid positions investigated in this study.

H-2g MHC class Il molecule(s) based on comparisons of
peptides responsible for eliciting experimental autoimmune
myocarditis?®

Holm et al.

correlated to the biological response (e.g., binding strertgth).

It has been shown that QSAR models based on properties of
amino acids at each position (local models) were superior over
models based on properties of whole peptides (global models)
for peptides binding to the MHC class | HLA-A*0206%.

In the study reported here we designed a peptide library based
on the minimal CII peptide binding to the mouse MHC class Il
molecule A, using the SMD approach. The design was
performed in amino acid space, and peptides were selected using
D-optimal desigrf® The chosen peptides were synthesized on
solid phase, and their binding strength t8 Was tested in a
cell-based competition assay. Multivariate methods were used
to evaluate the binding data, and a QSAR model was subse-
quently established. An external peptide test set was used to
further verify the binding model.

Results and Discussion

Peptide Scaffold.The minimal Cll peptide epitope found to
bind to the A molecule while retaining the ability to induce
T-cell responses, i.e., the octapeptide Cli2@67!8 was
decided to be the most suitable scaffold for this binding study
(Figure 2). Although the even shorter peptide ClI2&®6 has
been shown to bind (although very weak§) was believed
that modifications were likely to cause severe losses ®f A
binding.

Position 264 harbors the GalHyl moiety important for T-cell
recognition, and it has been shown that the moiety has minimal

Various complementary methods for designing and generating influence on peptide binding to the*Anolecule®® This position
peptides to elucidate binding and/or subsequent T-cell responsedvas therefore kept constant and nonglycosylated in order to

are available, including scanning of single amino aéfuse

of positional scanning combinatorial librari#s32 phage-display
libraries3334 peptide isostere®;*>and computational methods
such as structure-based desfigit and statistical molecular
design (SMD)":38 There has been great effort in predicting
binding of short peptides to MHC molecul&s!® There are a
wide range of motif-based prediction algorithms available online
where SYFPEITHI! and RANKPEP?43 include models for
mouse MHC class Il molecules, buf & not included. In recent
years, nonlinear pattern recognition methods like neural net-
works#* support vector maching8,and a kernel-based ap-

simplify the synthesis of the peptide library. However, it should
be stressed that GalHyl plays an extremely important role in
T-cell responses and thus warrants further study regarding
autoimmune response. The known critical binding points, i.e.,
the anchor residues Ile260 and Phe263, were also left unchanged
to prevent complete loss of binding among members of the
peptide library. Consequently, five positions (Ala261, Gly262,
Gly265, Glu266, GIn267) in ClI260267 were chosen to be
systematically varied with SMD, referred to hereafter as
positions 5 (Figure 2).

In a first attempt to synthesize the library of selected peptides

proach® have been reported for classification of binders versus considerable problems with aqueous solubility were experienced.
nonbinders of MHC class Il molecules. Only a few studies To circumvent these problems, lysine was introduced at the N
present quantitative structuractivity relationship (QSAR)  and C terminals of the peptid&l{Lys andC-Lys, respectively)
models of peptides binding to MHC class Il molecules with and tested for two commonly used Cll-specific T-cell hybridoma
the objective of achieving quantitative predictions of binding cell lines (HCQ.4 and HDBZ2, Table 1). The peptide with lysine
strength and information about the influence of different amino at the C terminal was recognized by both hybridoma. Conse-
acid positions. Doytchinova and Flower have presented anquently, the peptide scaffold was elongated with a C-terminal
additive method for quantitative binding affinity prediction for  lysine to improve the solubility of the peptide librat$\We also
peptides binding to molecule DRB1*0481The same meth-  decided to N-acetylate the resulting peptide scaffold and to
odology was also recently applied to six class Il mouse alleles introduce a C-terminal amide to prevent loss of affinity tb A
(I-Ab, I-Ad I-AK, I-AS, |-E9, and I-E¥).48 In addition, a 3D-QSAR  due to the presence of charged functional groups in the peptide
model for the human DR-4 molecule has been developed by backbone (Figure 2).

Lin and co-workerg? Building Block Selection Using Multivariate Character-

The advantage of using SMD for designing a set of peptides ization. A representative set of peptides to synthesize and test
to investigate the importance and influence of different peptide was selected using SMD in building block space using amino
positions by QSAR modeling is that it enables the effects of acid descriptors. Several characterizations of amino acids have
more than one molecular property at several positions to be been presented previous®?>-5° and QSAR models of class |
investigated with a minimum number of peptides. It also yields and class Il MHC peptides described in the literature have been
information about potential interactive effects between properties based on additive descriptats?®53.5961 gelected property
at different positions and provides a sound basis for a subsequentlescriptor$? and thez-scale descripto?$%2 defined by Wold
QSAR modeling for prediction of binding: 2 The SMD and Sandbergf The z-scale descriptors are derived on the basis
approach is performed in building block space (i.e., amino acid of experimentally determined characterization of the amino acids
space), where the molecular characteristics of the separate amindollowed by a subsequent principle component analysis (BCA)
acids at specific positions used in the design can be directly resulting in three to five principle properties (i.e., tlze
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Figure 2. Peptide scaffold used to study molecular property preferences for peptide binding toNtéCG\class Il molecule based on the minimal

ClI glycopeptide with retained T-cell response (ClI26267). Five positions in the scaffold were varied by SMD, and the effects were studied.
Major anchor residues (positions 260 and 263) were left unchanged. The nonmodified lysine residue was used in position 264, and an additional
lysine was added to the C-terminal for solubility purposes. The arrows indicate the amino acid sets selected for incorporation at each position.

Table 1. Amino Acid Sequences of N- and C-Terminally Extended Peptides and Resulting T-Cell Responses

position hybridoma

peptide 259 260 261 262 263 264 265 266 267 268 HDB2 HCQ4
N-Lys Ac-Lys lle Ala Gly Phe Lys Gly Glu GIn-NH + -
C-Lys Ac-lle Ala Gly Phe Lys Gly Glu GIn Lys-NH + +
ClI260—267 Ac-lle Ala Gly Phe Lys Gly Glu GIn-NH + +

a+ refers to an equally strong response to the corresponding longer peptide €M259and— refers to no response at the tested concentrations.
bIncluded as reference peptide.

scalesF®58 Even though these descriptors have proven to be A comparative model of the Amoleculé’indicates that there
) v ug P Ve prov is limited room for bulky side chains at positions—3

successful in several QSAR models of peptide binding, initial (corresponding to positions 261, 262, and 265), where small
studies indicated that these descriptors were not sufficient for resjgques (glycine and alanine) occur in Cll. This implies that

our problem, particularly in mapping the flexibility of the amino  the presence of large amino acids at any of these positions could
acids (data not shown). Furthermore, calculated molecular severely reduce the peptides’ ability to bind to tHemolecule.
descriptors have been shown to contain similar information as Therefore, the principal property design space was reduced for
experimentally derived onééHence, a new set of 28 calculated these three positions to cover only amino acids of small to
molecular descriptors was selected to represent importantmoderate sizes. Five amino acids representing this space were
molecular properties for binding such as size, flexibility, selected: Thr, Ser, Val, Met, and Ala (Figures 2 and 3a,c). For
electronic description, lipophilicity, and hydrogen bond donor POSitions 4 and 5 (corresponding to CI1266 and CII267) there

and acceptor capabilities. The characterization was made usingVaS: according to the Amodel, no need for restrictions in the

semiempirical-based descriptors, indexes, and character countsChemlcal space. Therefore, the total property space was used

. . .to cover as large an area as possible, and six amino acids were
and the number of descriptors was compressed to its main

o ) ) . 7 chosen: Arg, Asn, Asp, Tyr, Ser, and Val (Figure 2). These
principle properties using PCA in a manner similar to that for 5 ing acids represented a maximum spread in characteristics

the z-scale descriptors. During the cause of this work a new setgch as aliphatic/aromatic, hydrogen bond donors and acceptors,
of amino acid descriptors was reported using a similar approachsijze, and charged/neutral, as described by the three score values
of using theoretical descriptors and a subsequent £CA. in the principal property space (Figure 3a,c).

Library Selection Using D-Optimal Design. Virtual com-

rincipal properties (four according to the Scree plot but five binations yielding all possible variations of the selected amino
P pal prop 9 P acids for the five positions in the scaffold resulted in a peptide

with eigenvalye_s larger than 1) fqr yvhich the most importgnt library consisting of 4500 peptides¥(5 62). D-optimal desigff
(t1—13, describing 65% of the variation) were further used in a5 applied to this library to reduce it further. Each amino acid
the modeling procedure as design variables (Figure 3). The first gt the five altered positions was represented by the three values
componenttl, mainly separated amino acids based on size; of the scaled principal propertied,—t3, which when combined
small amino acids such as glycine and alanine had high scoreinto peptides resulting in 15 values representing a 15-
values, while large amino acids such as arginine and tryptophandimensional principal property space. A library of 22 peptides
had lowt1 score values (Figure 3a,b). For the second and third with the most homogeneous distribution possible of selected
componentst@ andt3, respectively), separation was mainly ~@mino acids at each position was chosen out of the suggested
based on lipophilicity and flexibility, respectively. Three groups D-optimal designs while maximizing the volume spanned in
of amino acids could also be distinguished in the/s t2 score the principal property space. Two peptides with molecular

plot (Figure 3a). Amino acids with hydrogen donor and acceptor properties closest to the center of the principal property space
capabilities, such as asparagine, arginine, and glutamic acid were added as center points. The procedure used to select these

. . . .24 peptides ensured that the chosen library had high chemical
are located in the upper-left quadrant. Aromatic amino acids bep y 9

) . . ) _ diversity and information content (Table 2).
are found in the lower-left quadrant with aliphatic ones in the Synthesis, Biological Testing, and Preanalysis of DatZhe

lower-right quadrant. The two remaining principal properties, peptides of the library (Table 2) were synthesized on solid phase
t4 andt5, describe less generally applicable characteristics for g5 N- and C-terminal amides. Cleavage from solid support and
binding, e.g., separation of amino acids containing hydroxyl or purification by reverse-phase HPLC rendered the pure products,
sulfur groups. hereafter referred to a$—22 and CP1-CP2 The binding

The PCA of the molecular descriptors resulted in four to five
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Figure 3. Score (a, c) and loading plots (b, d) resulting from PCA of the 20 coded amino acids described by 28 molecular descriptors. First versus
second component plots are visualized in (a) and (b), while first versus third component plots can be seen in (c) and (d). Amino acids indicated in
red (Met, Ala, Thr) and green (Val, Ser) were chosen as building blocks for the variations at positi®n$te larger principal property space
covered by the building blocks in blue (Arg, Asn, Tyr, Asp) and green (Val, Ser) was used for positions 4 and 5. Explanations of the molecular
descriptor abbreviations in (b) and (d) are given in the Experimental Section.

strength of the peptides to the MHCIFAnolecule was studied  2—4) had a linear relationship to the logarithm of the corre-
in a competitive assay in which the peptides were evaluated sponding concentration, and nontransformed responses gave
for their ability to prevent the binding of a biotinylated CLIP  similar results as the logit-transformation (cf. p§c The
reference peptide to®transfected cells. The test peptides were response values were scaled to unit variance, which gave results
incubated at seven different concentrations (750, 250, 83, 28,similar to those for the Pareto scaling. Single, duplicate, and
9, 3, and 1uM; designated concentrations-Z, respectively) qguadruplet samples showed good reproducibility both in and
in duplicate, and the experiments were repeated twice. Structure between experiments except for run 2 of peptitie® where
activity relationships were evaluated using the % inhibition at the results deviated from the others and hence were excluded
different concentrations of the peptides as the biological from further analysis. The most robust models were obtained
response. when averages of duplicate samples were used as the biological
The partial least-square projections to latent structures (PLS)responses. Therefore, in the final QSAR model the biological
method”:%8 has been the most commonly used regression responses of the peptides were represented by the average
method for developing QSAR models of peptides binding to percentage inhibition of the pairs of duplicate samples at
class | and class Il MHC moleculé%8535962 glthough a recent ~ concentrations 24 (referred to as Y2, Y3, and Y4) except that
publication has shown promising QSAR results with support peptidesl—9 were each represented by a single duplicate sample
vector machine regressiéf Here, the 15 principal property — average (Table 2). Peptidésind9 and the two center peptides
values used for the library selectioine., the combination of (CP1 and CP2) yielded deviating data because of solubility

the PCA score valued —t3 for all the peptides (th& matrix), problems and/or toxicity to the cells in the binding assay and
were correlated to the biological response (thematrix) by were not included in the modeling.
PLS regression. QSAR models of peptides binding to class | and class Il MHC

The analysis of th& andY data revealed that the responses molecules using PLS regression have been reported including
at concentrations24 (i.e., 250, 83, and 28M) contained the only linear term#&’+48:53.60.65yt also linealand cross-terms that
most information, since most peptides did not bind at the lower account for interactions between side chains at relative positions
concentrations57 and that solubility and/or toxicity problems  1—2 and 1-3.4859.61A comparison of the two models based on
were detected for some peptides at the highest concentratiorthe data in this study revealed identical interpretation of the
(750uM, concentration 1). The response block (concentrations linear terms when considering the PLS weight vectors (regres-
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Table 2. Amino Acid Sequences andBinding Data for the Members of the Peptide Library Used for QSAR Modeling

varied position inhibition (%)

peptidé Pos1 Pos2 Pos3 Pos4 Pos5 Y2 Y3 Y4

1 Ac-lle Met Met Phe Lys Met Ser Asp Lys-NH 30/- 17/- 4/-

2 Ac-lle Met Met Phe Lys Val Arg Arg Lys-NH 74/- 52/- 36/-

3 Ac-lle Met Met Phe Lys Thr Asp Val Lys-NH 16/- 24/- 10/-

4 Ac-lle Met Thr Phe Lys Met Tyr Val Lys-NEl 48/- 40/- 13/-

5 Ac-lle Met Thr Phe Lys Ala Val Tyr Lys-NH 72/- 59/- 47]-

6 Ac-lle Met Ser Phe Lys Thr Arg Asp Lys-NH 54/- 271- 15/-

7 Ac-lle Val Val Phe Lys Ser Arg Tyr Lys-NB -- -- --

8 Ac-lle Val Ala Phe Lys Thr Val Val Lys-NH 41/- 271- 22/-

9 Ac-lle Val Thr Phe Lys Val Asn Asn Lys-Nb -- -- --
10 Ac-lle Val Ser Phe Lys Ala Tyr Arg Lys-NB 51/39 60/61 49/47
11 Ac-lle Ala Met Phe Lys Met Arg Ser Lys-NH 77178 61/63 40/38
12 Ac-lle Ala Met Phe Lys Ser Val Asn Lys-NH 49/50 32/29 18/19
13 Ac-lle Ala Val Phe Lys Met Val Arg Lys-NH 68/70 54/59 40/42
14 Ac-lle Ala Ala Phe Lys Ala Asp Ser Lys-NH 47/53 31/36 18/31
15 Ac-lle Ala Thr Phe Lys Thr Tyr Tyr Lys-NH 70167 58/54 38/21
16 Ac-lle Thr Met Phe Lys Met Asp Arg Lys-Nb 62/61 46/38 25/26
17 Ac-lle Thr Met Phe Lys Val Val Tyr Lys-NH 59/46 50/42 35/32
18 Ac-lle Thr Val Phe Lys Val Tyr Asn -NH 56/50 41/36 24/23
19 Ac-lle Thr Thr Phe Lys Ser Ser Ser Lys-NH 20/13 6/2 6/-3
20 Ac-lle Thr Ser Phe Lys Met Arg Tyr Lys-NH 75/80 61/69 48/50
21 Ac-lle Ser Ala Phe Lys Thr Asn Arg Lys-NH 84/75 56/61 40/42
22 Ac-lle Ser Thr Phe Lys Ala Arg Val Lys-NH 70/74 56/58 39/39
CP1 Ac-lle Val Val Phe Lys Val Asp Asp Lys-Nbi -- -- --
CP2 Ac-lle Val Ala Phe Lys Val Ser Asp Lys-NH -- -- --

a peptidesl—22 were selected by D-optimal design whl®1 andCP2 represented center points% inhibition in which the average was obtained from
duplicate samples in two separate runs for concentrations Y2, Y3, and Y4 corresponding to 250, 83ylhde&pectively. Single dash (-) indicates that
data from run 2 for peptides—9 were excluded because they were deviant. Double dashes (- -) indicates deviating data due to solubility and/or toxicological
problems.

sion coefficient of 1.0) and a similar pattern of the normal R
probability plot of the residuals. The model statistics showed L st ol 920
that the inclusion of the cross-terms gave a slightly higrrt s o5 S o2
(AR? = +0.05) than the model based on only the linear terms = .,13
but a much wors€) value AQ? = —0.27). Exclusions of cross- £ o1 o1t ﬂ; 2
terms with low model coefficients improved tiig? value but -_E oi7 ‘” o2
not better than the linear mode\Q? = —0.03). It appears that o b
for our data inclusion of cross-terms did not improve the models T
significantly. Interestingly, the only other study, to our knowl- IS 18 b
edge, for which interaction terms between side chains in a QSAR 3 18O g oi5
model for MHC class Il molecules have been investigated > B2 o
resulted in the same conclusith. % -
QSAR Model. The final linear PLS model showed a good 2 . o
correlation between the experimental and calculated inhibition 5 oo
values (Figure 4). This two-component model explained 66% g et
of the variation in the biological respons@?(; = 0.59; R?3 wee e
= 0.70; R%y4 = 0.70) with a cross-validate@? of 43% Q% 0 10 0 4 50
= 0.37; Q%3 = 0.47; Q%4 = 0.45). The dModX plot and the Calculated inhibition (%)
normal probability plot of the residuals did not reveal any Figure 4. Calculated versus experimentally determined inhibition
outliers. values for one of the three responses (Y4) used in the MuRES

The QSAR model was validated and tested for its predict- regression. The QSAR model was based on 15 principal property values

. - L ; t1—t3 at positions +5) for 20 peptides, and the three biological
ability using an external test set. The aﬁ'mty_t@ qu predlcte_d Sesponsespwere repres)ented as Ff)’/opinhibition at three differentgpeptide
by the QSAR model for the 3 200 000 possible virtual peptides. concentrations (Y2, Y3, Y4).

Three clusters, each consisting of 5000 peptides predicted to

have high, average, and low? Affinity, can be seeninthe PLS QSAR model. Hence, the binding data could not be directly
discriminant analysis (PLS-DA) plot (Figure 5). Most library compared in terms of percentage inhibition, so we determined
peptides belonged to the class of peptides predicted to havewhich of the three classes (i.e., high, medium, or low predicted
average affinities, while several were predicted to have low affinity) each of the peptides belonged to and also ranked them
affinity and only one was found in the high-affinity region relative to each other on the basis of the biological binding data.
(peptide 20), indicating that there is scope for designing The model successfully distinguished binders from nonbinders
improved binders. Two peptides from each class (high-, (Table 3). All the peptides that were predicted to bind with either
medium-, and low-ranked binders) were selected as an externahigh or average affinity to A(peptidesvV1-V4) did bind to

test set (Figure 5 and Table 3). These six peptides, referred tothe A9 molecule, while the peptides predicted to have the lowest
asV1-Ve6, were synthesized and tested for binding strength to affinity (V5 and V6) showed no response at all. The highly
Ad. These validation peptides were tested on a separate, latesscored peptidd/1 was found to give the strongest measured
occasion with a different setup of biological material and response. The other highly scored pept#and the peptides
modified protocol compared to the peptides used to build the predicted to have average affinityd andV4) displayed similar
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Figure 5. PLS-DA score plotf{l versust2) based on three classes of
virtual peptides predicted by the QSAR model to be strong, medium,
and weak binders to the%mnolecule. The 5000 highest ranked peptides

are located to the right (gray). The 5000 closest to the average are

located in the center (pink), while the 5000 lowest ranked are located
to the left (blue) in the plot. The six peptides constituting the external

Holm et al.

4. This correlates well to experimental results suggesting that
rat Cll binds more strongly to thedmolecule than mouse Cfl
and correlates with the finding that exchanging glutamic acid
by aspartic acid at position 266 in CII25@70 resulted in a
more than 10-fold reduction in binding strength t8.

In position 5, just as in position 4, large and to some extent
flexible amino acids were strongly preferred becauseltand
t3 variables were negatively correlated with the response (Figure
3 and 6). Interpretation of the PCA loading vectpisandp3
showed that the dominating molecular descriptors, as for position
4, were volume, surface area, and the Keir flexibility indexes.
The lipophilicity, as explained by2, had a moderate impact
on binding, and the regression weight value indicates a binding
preference for hydrophobic and aromatic amino acids, e.qg.,
phenylalanine and methionine.

In position 3, the regression weight values t@f and t3
variables were of moderate sizes and negatively correlated with

test set are marked with black diamonds. The distribution of the peptidesthe response. The dominating original molecular descriptors

building up the QSAR model is illustrated by green triangles, which
show their predicted PLS-DA score valugB$%1 andtPS2).

binding preferences and had lower binding affinity t& than
V1. The results of the external validation confirmed the
predictability of the QSAR model obtained.

A comparison of our model with the QSAR models developed
for other mouse MHC class Il molecules (RA-AY, I-AK, I-AS,
I-E9, and I-E¥)*8 reveals that thé? and Q2 are lower for our

model (0.66 and 0.43 compared to 0.99 and 0.83). However,

R2 and Q? are internal validation criteria and external test sets
are a superior alternative for evaluating the model quality. The
predictive power of the models for the six class Il molecules

were LOGPC, AM1SM2, and the Keir indexes, indicating
preferences for hydrophobic and flexible amino acids (Figure
3). However, the size of the side chains does not appear to be
an important feature for binding within the limited studied
chemical space (cf. size of PotB:in Figure 6). The most
suitable coded amino acids for this position belong to any of
the two adjacent clusters containing isoleucine, leucine, valine,
methionine, or maybe even the aromatic phenylalanine.

The PLS regression weight values for the side chain properties
at positions 1 and 2 described ty—t3 were low to medium,
indicating that the variations made at these positions had no
major effect on the binding of the peptide to thé molecule.

presented by Hattotuwagama et al. showed great variation butAll amino acids within the investigated area in the principal

had similar highR2 andQ? values of the models, where thé A
model had a very high predictivity while that of Bvas very
poor28 Our model successfully managed to predict the binding
strength of six new peptides despite the relatively low internal
statistical terms.

The interpretation of the influence of the different amino acid
properties at the different positions is presented in detail below.
The regression coefficients of the different peptide positions

property space were tolerated. However, the moderate positive
weight values of1 andt3 indicate that small rigid amino acids
were preferred (Figure 3), while the polarity of the amino acids
did not seem to matter (cf. Posl:and Pos22 in Figure 6).

The preferred amino acids at these positions correspond well
with those naturally occurring in the Cll peptide, i.e., Ala261
and Gly262.

2. Summarizing the Model. Preferred amino acids and

showed the same pattern for all three investigated concentrationsgharacteristics of the studied positions are summarized in Figure

and the regression weight values & c plot) can be seen in
Figure 6. A design guide of preferred directions in the score
plots of the 20 amino acids is provided in the Supporting
Information.

1. Interpretation of the QSAR Model. Positions 4 and 5
had the strongest influence on the peptide binding t© A

7. A molecular property binding motif was discernible and easily
transferred to sequence binding motifs. Besides the previously
identified CII260 and Cl1263 anchor positions, positions 4 and
5 (corresponding to Glu266 and GIn267 in Cll) were the most
important for peptide binding to the%mnolecule. Residues at
these two positions should preferably be large and flexible. In

according to the regression model, as shown by their dominatingaddition, the model indicates that residues at position 4 should

regression weight values (Figure 6). The variables describing
size and flexibility were the main contributors for position 4,
as bothtl andt3 were strongly negatively correlated with the

contain hydrogen bond donors and acceptors to promote binding,
while residues at position 5 should be hydrophobic. At positions
1 and 2 (corresponding to Ala261 and Gly262 in CIl) small

response. For a good binder the amino acid at position 4 shouldand rigid amino acids are favored, even though moderately sized

preferably be large and flexible, e.g., arginine. The original

amino acids were tolerated. Finally, position 3 (corresponding

molecular descriptors responsible for these features wereto Gly265 in Cll) should harbor aliphatic, hydrophobic residues

revealed, based on their PCA loading values, to be volume,
surface area, and the Kier flexibility indexes 1K, 2K, and PHI
(Figure 3). In addition, the positively correlated regression
weight for t2 indicated that hydrogen bond donors/acceptors
could be preferred over more lipophilic amino acids. Although

for optimal binding. These proposed preferences were supported
by the strong A binding of peptideV1 from the external test
set. ForV1 the amino acids at all positions fulfilled the
suggested requirements: Thr at position 1, Ala at position 2,
lle at position 3, Arg at position 4, and Trp at position 5. It

the side chain of this residue has been shown to be veryshould be noted that this designed peptide has no amino acids

important for T-cell stimulationd? our model shows that it also
influences binding to the & By comparison of the relative
position in the principal property space of glutamic acid found
in rat CIl with that of aspartic acid found in mouse CII, it can

in common at any of the five varied amino acid positions with
the octamer originating from CII. On the other hand, peptide
V5, which was predicted to be a poor binder, had unfavorable
amino acids at all of the investigated positions, effectively

be seen that glutamic acid is preferred to aspartic acid in position preventing its binding to the #molecule. The Abinding motif
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Table 3. Amino Acid Sequences andBinding Data for the Six Peptides Used for External Validation of the QSAR Model

varied positions Abinding?
peptide Pos1 Pos2 Pos3 Pos4 Pos5 Yred found rankd
V1 Ac-lle Thr Ala Phe Lys lle Arg Trp Lys-NH + + 1
V2 Ac-lle lle Gly Phe Lys Ala Arg Met Lys-NH + +,m 2
V3 Ac-lle lle GIn Phe Lys Thr Leu Arg Lys-NB m +, m 2
V4 Ac-lle Thr Asn Phe Lys Gly Ser Arg Lys-NH m -, m 4
V5 Ac-lle Tyr Met Phe Lys Glu Pro Gly Lys-Nk - — 5
V6 Ac-lle GIn Met Phe Lys Arg Ala Gly Lys-NH - - 6

aDefinitions: +, strong binders; m, medium binders; poor bindersP Predicted class membership by the PLS-DA moé&lass membership as
determined from binding daté Relative ranking of peptides based on binding data.

molecular properties of the peptides (Figure 7). In addition to
05 earlier indications of two large hydrophobic binding pockets
(P1 and P4%? the preferences for small, rigid amino acids in

o4 the P2 and P3 binding pockets suggest that they are of limited
03 size. One could also speculate that the presence of large amino
02 acids in P2 and/or P3 could prevent the anchor residues from
reaching their binding pockets. In P6 the QSAR model implies
0.1 that there is a hydrophobic area in thé wolecule. The P7
Coo pocket appears to be rather large with some polar surface area,
3 while the P8 pocket is indicated to be a large, hydrophobic
01 binding area. When these preferences were compared with the
0.2 3D comparative model of the %Amolecule?® the models
03 matched remarkably well.
In the preferred design directions, as indicated by the QSAR
04 model, there are few amino acids with required characteristics
05 among the coded amino acids. More suitable non-natural amino
cNODpNOcNOTNaTNQTON acids could possibly be identified to further enhance the binding
A A EEEEER R R EE x> to the A" molecule, which could also increase the metabolic
S8ES8L38888R8E88 stability of the peptides. In addition, the information presented

Figure 6. PLS weight valuesw x c) for the QSAR model based on  in Figure 7 could be used to develop novel peptide mimetics
15 principal property valuest{—t3 at positions +5) and three based on the proposed preferred molecular properties. New
biolqgical responses represented as % inhibition at three different modified peptides with variations in physicochemical properties
peptide concentrations (Y2, Y3, Y4). and binding strength would be highly valuable in the develop-
indicated by the QSAR model could be used in future studies ment of effective immunization procedures for use in future
to predict the binding propensity of other self-peptides presented vaccination studies.

by the disease-associatel ®olecule. The results of this study

do not support the hypothesis that the KXXS motif, which has Conclusions

been postulated to be associated withréstricted antigenicity®

is important for binding. Similar results were also seen in a
recent study reporting significant features for T-cell recognition,
where the GalHyl-X-E motif was identified to be extremely
important for the T-cell respongé.The QSAR models of
peptides binding the six mouse alleles presented by Hattotu-
wagama et al. did not show a common theme for favored and
disfavored amino acid residu&s.A comparison with the
interpretation of our model did not reveal any clear common

A peptide library was designed, synthesized, and evaluated
for binding to the mouse MHC class Il moleculd.Ahe SMD
approach made it possible to select a chemically diverse and
informative library of 22 peptides and two center points out of
3200 000 possible peptide combinations. This highly reduced
set of peptides, together with inhibition data from a cell-based
competitive assay at three different concentrations of the
peptides, resulted in a high-quality QSAR model based on PLS

favored peptide binding pattern betweefiahd any of the six modeling that was successfully validated with an external test

other modeled mouse MHC class Il molecules. These resultsSet of six peptides.

are not surprising because MHC molecules are known to have A molecular property binding motif for peptides binding to
diverse characteristics in presenting peptide antigens. the mouse MHC class Il moleculetAvas established on the

The longer immunodominant part of Cll, i.e., ClI25870, basis of interpretation of the QSAR model of the five varied
binds to both of the MHC class Il moleculest fmouse) and positions. The C-terminal positions of the peptide scaffold
DR4 (humanf®7%72It has been proposed that the DR4-binding (corresponding to Cl1266 and Cl1267, respectively) appeared
motif of ClI256—ClI270 is shifted by three amino acids to have the strongest influence on th&peptide interaction,
compared to that of & resulting in Phe263 and Glu266 being While the positions corresponding to Cl1261 and ClI262 are the
at the anchor positions instead of 11le260 and Ph&263A ones that have the least influence according to the QSAR model.
comparison of the suggested DR4 peptide-binding nfifs In addition, the model provided indications of the characteristics
with our results regarding the %binding motif supports this  Of the binding site of the Amolecule and the findings in the
hypothesis, but too few amino acids have been altered within Present investigation correlated well with a comparative 3D
the DR4 epitope to warrant further comparative conclusions. model of the protein.

No experimentally determined 3D structure of theél A The QSAR model provides novel information and insight
molecule is available, but indications about the properties of regarding the Amolecule/peptide component of the ternafy A
the A binding site can be obtained from the postulated preferred glycopeptide, and T-cell receptor complex. This information
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PS5  NH, NH;
Lys®%¢ C-lys
116260 Phe?6
Ny Ala61 Gly262 " \/ﬁ\ Gly?65 Glu266 GIn267
N N
T e L L hey™
[¢] /ﬁ CH (0] H 0
P1 P4 / | \
\J
Peptide pos. Posl Pos2 Pos3 Pos4 Pos5
A’ pos. P2 P3 P6 P7 P8
Preferred binders
Molecular small small hydrophobic large large
property rigid rigid flexible flexible flexible
(H-donors & (aromatic,
acceptors) hydrophobic)
Suggested G,P, A G,P, A LLLM,V R, Q F,.M
amino acids (S, T) S, T) (F) M, K, N) (R,K)
Poor binders
Molecular large large polar small small
property flexible flexible H-donors & rigid rigid
acceptors (aliphatic) (polar)
Suggested R, K,M R, K,M D,N,E, Q P,G P,G
amino acids S, T (S)
Binding site properties
A% molecule small small hydrophobic big pocket big pocket
polar polar polar hydrophobic

Figure 7. Summary of the interpretation of the QSAR model illustrating the preferred and rejected amino acids and of molecular properties to
promote A binding. PostPos5 represent the five varied positions in the peptide scaffold, and suggested characteristics at corresponding positions
in the binding site of the Amolecule (P2, P3, P6P8) are also shown. Amino acids are represented by their conventional one-letter code.

could facilitate attempts to develop new treatments of autoim- generated libraries based on G efficiency, Log(DetXK),

mune diseases such as RA. Norm.log(Det ofX'X), condition number, and the most homoge-
neous distribution of the selected amino acids at each position. The
Experimental Section 50 peptides with the minimal Euclidean distance to the calculated

. o ) ) center point in the principal property space were calculated, and
Theoretical Characterization of Amino Acids. The structures o peptides were chosen as center points based on their synthetic
of the 20 naturally occurring amino acids were generated using feasibility and added to the library of 22 peptides.
Spartan softwaré and subsequently characterized by 11 molecular 2 Proiections to Latent Structures by Means of Partial Least-
descriptors including properties related to size (surface area, Squ.aresj The structure descriptor r):watrixxl based on the

molecular weight, volume), electronic features (dipole, HOMO, T .
LUMO, maximum charge, minimum charge, partial charge of c- combln_atlon of PCA score values representlng the' molec_u_lar
c1), and lipophilicity (logP, SM2) extracted from semiempirical properties of the amino acids, was relate_d to the blolsoglcal activity
AM1 calculations within Spartan softwaféln addition to these resi)hondse ma_tr|>_<\() utst;ng the P.LS re%retsswn Tﬁtr}ﬁf 'I;he PL; ¢
3D-based descriptors, 17 descriptors including functional group method maximizes e covariance between he 1atent variables o
counts (numbers of OH, NH, NHSH, CO, other NN x N} and theX and_Y matrlxes_(mL_lInY) and correlatgs these latent varlables_

i mhere of fiuo. g through linear combinations to a regression model. Even though it

other S{N x § groups), numbers of five-, six-, and nine-membered ="~ . : .
fings, number of hydrogen donof8IHD} and acceptorSNHA} is a linear method, a nonlinear relationship can be handled to some

indexes (path 1 Keir shape index-1K, path 2 Keir shape ifi@e} extent through transformation of, inclusion of nonlinear terms,

Kier flexibility index { PHI}), and saturation ratios (SatGrade, NAT/ ~@nd extraction of additional PLS components. The % inhibition at
SKC) were computed using the Dragon softw#ré. table of the several different concentrations (multi, scaled to unit variance,
descriptors is given in the Supporting Information. These molecular Was used as the response. The use of correlated response variables
descriptors were compressed by PE&77 using SIMCA soft- as a multiY matrix enhanced the stability and reliability of the

ware8 The number of significant principal components was decided Models because the biological data contained noise and, in some
using their eigenvalues, a Scree plot, and chemical interpretationcases, missing and deviating data. The quality of the model was
of the loadings for the corresponding components. investigated by estimating the amounts of explained variafé (
Statistical Molecular Design and Data Analytical Methods. and cross-validated predicted variatid@J** using seven cross-
1. Selection of PeptidesEach amino acid at the altered positions validation rounds. The validation of the final model was made by
was represented by the corresponding values of the scaled principal'Sing an external test set. The interpretation of the influence of the
properties score vectors. Peptides resulting from different combina- différent amino acid positions was based on the first PLS component
tions of amino acids yielded the structure descriptor matix ( yvelght vector, which provides the best estimate of the varla_ble
The score values were then scaled to unit variance for eachimportance when only one response or highly correlated multire-
dimension to avoid bias in the weighting of the varied positions or SPonses are usédAll PLS modeling was performed using SIMCA
molecular properties due to differences in variance. D-optimal Software’®
desigri®66.7%was performed using MODDE softw&Pao generate Preanalysis of Biological Data.The X and Y data were
15 libraries, each with 22 peptides. The selection by D-optimal preanalyzed to determine relevant concentrations, scaling prefer-
design maximized the volume spanned in the principal property ences, transformations, included model terms, and influence of the
space through maximization of the determinant (Det) of X experimental layout to assess the reproducibility of the assays and
matrix. The final library to synthesize was chosen from the 15 to detect peptide outliers. Relevant concentrations as ryiudtind



Peptides Binding to MoleculeA Journal of Medicinal Chemistry, 2007, Vol. 50, No. 2057

model terms to include in the final PLS-QSAR model and whether 1.5 mL/min. Preparative reversed-phase HPLC was performed using
the data should be logit-transformed and scaled to unit variance, a larger Kromasil C-8 column (250 mm 20 mm, 5um, 100 A)
pareto-scaled or nonscaled, were assessed by considering thavith the same eluents but a flow rate of 11 mL/min. In both cases
amounts of variation explained by the resulting PLS mode#, ( the eluate was monitored by a UV detector at 214 nm. The identity
their cross-validation value€g), and the normal probability plots  of the peptides was confirmed by MS and their puriy96%) by
of the residuals. Three sets of model terms were investigated: onlyanalytical HPLC.
linear terms, linear and all cross terms for relative position 1 Ad Binding Assay. The binding of peptides to AMHC class Il
and -3, and linear and selected cross termsZland 1-3) with molecules was preformed in a competitive assay using flow
PLS coefficients larger than 0.05 for all investigated concentrations. cytometry analysis. Briefly, the test peptidels-@2, CP1, CP2,
In order to test the biological effects of the entire peptide library \1-V6) and a reference peptide were incubated in 96-well plates
including center points and reference peptides as duplicated samplesat seven different concentrations (750, 250, 83, 28, 9, 3, arid,1
the experiment was divided and tested in three different experimentswhich are concentrations 1, 2, 3, 4, 5, 6, 7, respectively) for 2.5 h
(experiment 1, peptided—9; experiment 2, peptided0—18, at 37°C with a fixed concentration of biotinylated CLIP peptide
experiment 3, peptided9 CPs). The experiments were then (5,M) and M12Q 14-7 cells transfected with H-2AAfter being
repeated (runs 1 and 2), resulting in four samples/response curvesvashed to remove excess peptide, the cells were stained with 0.2
for each peptide. PCA of th¥ variables, for all four samples 4L of streptavidin-phycoerythrin (SAPE), which binds to the
(duplicated samples and duplicated runs), was used to assess thgjotinylated CLIP peptide. The phycoerythrin (PE) dye was detected
reproducibility both in and between experiments. Standard devia- by flow cytometry analysis using FACSort (Becton Dickingson,
tions were calculated, and a PLS with indicator variables was San Jose, CA) and Becton Dickingson software. The “% inhibition”
performed to identify deviating experiments. Thus, ¥enatrix for each peptide was calculated from the gated mean fluorescence
was extended by six columns with either 1 or O as indicator variable, by comparison with the fluorescence from the positive control (no
representing belonging or not belonging to a certain experiment inhibiting peptide) after subtracting the signal from the negative
number and run. Deviating data due to solubility problems and/or control (no biotinylated CLIP peptide). The experiment was
toxicity to cells used in the binding assay were visually detected performed in duplicate and was repeated once. The biological
when running the FACS analysis and/or as outliers in the PCA.  evaluation of the validation peptides was performed in a similar
External Validation. A representative test set for external way in duplicate but at a separate occasion and later than for the
validation was chosen from all possible 3 200 000 in silico generated designed peptide library. Since the reference peptide induced a weak
peptides, based on the coded amino acids. The virtually combinedresponse, the validation peptides were subjected to an additional
peptides were represented by their values of the scaled principalbinding study with a modified protocol.
properties score vectors, and the established QSAR model equation Recombinant Aq molecules were captured by incubation at
was used to predict their binding strength (% inhibition). Three 4°C overnight in a 96-well microtiter plate precoated with the mAb
ranking algorithms were then used to sort and select three sets ofy3-p and blocked with PBS containing 2% low fat milk. After
peptides: the 5000 predicted to be the strongest binders, the 500Qyashing, increasing concentrations of glycopeptides were added
predicted to have the closest to average binding strength, and theand incubated for 48 h at room temperature together with a fixed
5000 predicted to be the weakest bind&iSeparation of the three  oncentration of biotinylated CLIP peptide (“CLIPbio”, 2:8/).
classes of predicted peptides was enhanced using PLS-DA, andCL|Pbio-MHC class I complexes were quantified using the
selections were made from each class. The test set was synthesizegissociation-enhanced lanthanide fluoroimmunoassay (DELFIA) kit
and biologically evaluated for Abinding. system based on the time-resolved fluoroimmunoassay technique
Solid-Phase Peptide Synthesidhe peptides were synthesized  with europium-labeled streptavidin (Wallac, Turku) according to
in a manually operated reactor or a Pioneer peptide synthesis systenthe manufacturer’s instructions. The six validation peptidés
(Applied Biosystems, The Netherlands), using standard solid-phasev6) and a reference peptide were tested at 0.8, 4, 20, 100, and
peptide synthesis methodology on a Tentagel-S Ksin (Rapp 500 uM.
Polymere, Germany) in which the linker Fmoc-2,4-dimethoky-4  The full dose response curves for the second experiment were

(carboxymethyloxy)benzhydrylamine (Rink) was first coupled to  ysed to classify the validation peptides and to rank them in terms
the resin. This rendered peptides as C-terminal amides after cleavaggy relative binding strength.

from the resinN*-Fmoc amino acids carrying standard side chain
protective groups (Bachem, Switzerland and Neosystem S.A.
France, 4 equiv), as well as the Rink linker (4 equiv), were coupled
to the resin in dimethylformamide (DMF), which was predistilled
a_nd useld |n;]med|ateI)|/|0r stored Lorashortdt_[mercﬁ/é\ lmolet():u(lja_l_r id determined in a standard assay using the T-cell clone CPLL.
sieves. In the manually odperate reell_ctor ||soprc_prhcar odnmt efBriefIy, 5 x 10* hybridoma T cells were cocultured with>6 10°
(1DrI]C(,jS.9 (E)quw) was ulse as a coupling reagﬁnt In the presefncr(]e 0 syngeneic spleen cells and antigen in a volume of 200n 96-
-nydroxy enzotrl_azog éH?]Bt’ 6k edquw). The t;))rogresr? 0 Itble well flat-bottom microtiter plates. After 24 h, 1Qd aliquots of
reacthndyvas r;]lonlltore . ylt ena I? €ye using bromop feno duethe supernatants were removed and frozen to kill any transferred
as an indicatot. Alternatively, coupling reactions were performed v iqoma T cells. IL-2 sensitive CTLL T cells (x 10P/mL,
in the Pioneer peptide sy_nthe5|s system l.Jt'“Z'ng 0.5 M HBTU and 100 uL/well) were added to the thawed supernatant. The CTLL
astording o the manufacirer's pamuctions. Frmoc protectve graups CUILEs were ncubated for 24 h, after which they were pulsed
. " S= P2 with 1 uCi of [PH]thymidine and incubated for an additional
‘gﬁﬂrg rifTOVEd af}etr_ eacrflt(};oupllnt% ctycle using 20?[/;’] pllgetrldln_e Irl] 15-18 h. The cells were harvested on glass fiber sheets in a
. After completion of the synthetic sequence, the N-terminal . :
of the peptides was acetylated by incubation withGOMF (1: Filtermate cell harvester (Packard Instruments, Meriden, CT), and

2)for 1 h. The peptides were cleaved and deprotected by incubationthe amount of radioactivity in them was determined using a Matrix
with TFA/H,O/thioanisole/ethanedithiol (35:2:2:1)rf@ h at 40 25;:;22‘;? counter (Packard). All experiments were performed in
°C. Following repeated concentration from HOAc, the peptides were '

precipitated from BO and the crude products were freeze-dried.

Purification by reversed-phase HPLC and freeze-drying gave the th A(ékno(\j/\.llehdgment. -rl;hcl:s WOI'.||( mgsafirgecl t;y grarI;ts frgm
homogeneous compounds-Lys, C-Lys, 1-22, CP1, CP2 V1— € swedish kesearch Louncil, ther ustatsson Founda-

V6). Analytical reversed-phase HPLC was performed using a tion for Research in Natural Sciences and Medicine, and the
Kromasil C-8 column (250 mnx 4.6 mm, 5«m, 100 A), elution program “Glycoconjugates in Biological Systems” (GLIBS)
with a linear gradient of MeCN (6~ 100% or 0— 80% over 60 sponsored by the Swedish Foundation for Strategic Research.
min), balance HO, both containing 0.1% TFA, and flow rate of We thank Dr. Fredrik Pettersson for the ranking algorithms.

Determination of T-Cell Hybridoma ResponsesThe response
' of each T-cell hybridoma line, i.e., the amount of IL-2 secreted
following incubation with antigen-presenting spleen cells in the
various concentrations of glycopeptidds-i(ys and C-Lys) was
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Supporting Information Available: A complete list of the used
molecular descriptors, method details of the preanalysis, detailed
statistics of the PLS models, purity data of the peptides, and
biological data of the validation peptides. This material is available
free of charge via the Internet at http://pubs.acs.org.
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