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Presentation of (glyco)peptides by the class II major histocompatibility complex molecule Aq to T cells
plays a central role in collagen-induced arthritis, an animal model for the autoimmune disease rheumatoid
arthritis. A peptide library was designed using statistical molecular design in amino acid space in which
five positions in the minimal mouse collagen type II binding epitope CII260-267 were varied. A substantially
reduced peptide library of 24 peptides with diverse and representative molecular characteristics was selected,
synthesized, and evaluated for the binding strength to Aq. A multivariate QSAR model was established by
correlating calculated descriptors, compressed to its principle properties, with the binding data using partial
least-square regression. The model was successfully validated by an external test set. Interpretation of the
model provided a molecular property binding motif for peptides interacting with Aq. The information may
be useful in future research directed toward new treatments of rheumatoid arthritis.

Introduction

The immune system’s ability to distinguish self from nonself
is a crucial feature of the body’s defenses against foreign
antigens. This ability is linked to a ternary complex in which T
cells play a key role in the activation or nonactivation of the
immune system. Foreign and autoantigens are degraded into
peptides by antigen presenting cells and subsequently presented
by class II major histocompatibility complex (MHCa) molecules
for recognition by T-cell receptors. This recognition constitutes
an important step in a series of events that forms the immune
response to foreign antigens. The self-peptide MHC complexes
should not lead to any response, and when this tolerance is
disrupted, an immune response toward endogenous tissue(s) is
elicited and an autoimmune inflammatory disease, such as
rheumatoid arthritis (RA), may develop.

RA is one of the most common autoimmune inflammatory
diseases and is characterized by chronic inflammation of
peripheral cartilaginous joints. The symptoms include swelling,
stiffness, and pain in the joints and subsequent erosion of
underlying bones, which might further lead to deformity and
malfunction of the joints.1 A large number of therapeutic agents
against RA are commercially available, but there is no cure and
most treatments do not inhibit the progression of the disease
satisfactorily.2 The major difficulties hindering the development
of effective treatments for RA seem to be the complexity of
the system, lack of knowledge of the mechanisms involved, and
the need for reliable disease models.3,4 RA has been linked to
the MHC class II molecules DR1 and DR4,5-7 and the activated
immune systems of severely affected RA patients include both

autoreactive T cells8-10 and antibodies11-13 directed against type
II collagen (CII), which is the most abundant protein in cartilage.

Injection of CII in rats14 or mice15 provokes the development
of collagen-induced arthritis (CIA) with symptoms and histo-
pathology similar to those of RA. CIA is the most commonly
used animal model for RA, and susceptibility to murine CIA is
linked to the mouse MHC class II molecule Aq.16,17 By use of
synthetic peptides, the minimal CII peptide epitope required for
both binding to the Aq molecule and inducing a T-cell response
has been determined to be the octapeptide ranging from amino
acid 260 to amino acid 267 (CII260-267, Figure 1).18 The
isoleucine at position 260 and phenylalanine 263 have been
found to be essential anchor residues for binding to the Aq

molecule, according to an alanine scan.19,20Furthermore, it has
been shown that the T-cell response is often linked to specific
recognition of a carbohydrate moiety resulting from post-
translational modification of lysine at CII264 (â-D-galactopy-
ranosyl modified hydroxylysine, i.e., a GalHyl moiety).21-24 In
some cases, the T-cell recognition is not linked solely to the
sugar moiety but also to the glutamic acid located at position
CII266.25 Highly interesting results have shown that vaccination
of mice with the mouse and rat galactosylated CII256-273
peptides can provide protection against development of CIA.26

In particular, vaccination by the rat glycopeptide complexed
with the Aq molecule significantly retarded progression of the
disease and reduced its severity in mice with ongoing chronic
relapsing arthritis.27 These findings indicate that analyses with
variants of the CII glycopeptide could be very useful for
exploring the tricomponent Aq/glycopeptide/T-cell receptor
interactions and could facilitate the development of potential
drug or vaccine candidates for treating RA.

While the carbohydrate specificity has been extensively
studied, less is known about the interactions between the Aq

molecule and the peptide ligand in the ternary complex. Besides
the proposed anchoring positions (Ile260 and Phe263), the
introduction of a methylene ether amide bond mimetic between
amino acids Ile260 and Ala261 in the minimal T-cell epitope
CII260-267 resulted in a substantial drop (20-fold) in peptide
affinity for Aq.25 Moreover, Jane-wit et al. have postulated a
common autoimmune-motif (KXXS) for peptides binding to
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H-2q MHC class II molecule(s) based on comparisons of
peptides responsible for eliciting experimental autoimmune
myocarditis.28

Various complementary methods for designing and generating
peptides to elucidate binding and/or subsequent T-cell responses
are available, including scanning of single amino acids,20,29use
of positional scanning combinatorial libraries,30-32 phage-display
libraries,33,34 peptide isosteres,25,35 and computational methods
such as structure-based design34,36 and statistical molecular
design (SMD).37,38 There has been great effort in predicting
binding of short peptides to MHC molecules.39,40 There are a
wide range of motif-based prediction algorithms available online
where SYFPEITHI41 and RANKPEP42,43 include models for
mouse MHC class II molecules, but Aq is not included. In recent
years, nonlinear pattern recognition methods like neural net-
works,44 support vector machines,45 and a kernel-based ap-
proach46 have been reported for classification of binders versus
nonbinders of MHC class II molecules. Only a few studies
present quantitative structure-activity relationship (QSAR)
models of peptides binding to MHC class II molecules with
the objective of achieving quantitative predictions of binding
strength and information about the influence of different amino
acid positions. Doytchinova and Flower have presented an
additive method for quantitative binding affinity prediction for
peptides binding to molecule DRB1*0401.47 The same meth-
odology was also recently applied to six class II mouse alleles
(I-Ab, I-Ad, I-Ak, I-As, I-Ed, and I-Ek).48 In addition, a 3D-QSAR
model for the human DR-4 molecule has been developed by
Lin and co-workers.49

The advantage of using SMD for designing a set of peptides
to investigate the importance and influence of different peptide
positions by QSAR modeling is that it enables the effects of
more than one molecular property at several positions to be
investigated with a minimum number of peptides. It also yields
information about potential interactive effects between properties
at different positions and provides a sound basis for a subsequent
QSAR modeling for prediction of binding.50-52 The SMD
approach is performed in building block space (i.e., amino acid
space), where the molecular characteristics of the separate amino
acids at specific positions used in the design can be directly

correlated to the biological response (e.g., binding strength).52

It has been shown that QSAR models based on properties of
amino acids at each position (local models) were superior over
models based on properties of whole peptides (global models)
for peptides binding to the MHC class I HLA-A*0201.53

In the study reported here we designed a peptide library based
on the minimal CII peptide binding to the mouse MHC class II
molecule Aq, using the SMD approach. The design was
performed in amino acid space, and peptides were selected using
D-optimal design.50 The chosen peptides were synthesized on
solid phase, and their binding strength to Aq was tested in a
cell-based competition assay. Multivariate methods were used
to evaluate the binding data, and a QSAR model was subse-
quently established. An external peptide test set was used to
further verify the binding model.

Results and Discussion

Peptide Scaffold.The minimal CII peptide epitope found to
bind to the Aq molecule while retaining the ability to induce
T-cell responses, i.e., the octapeptide CII260-267,18 was
decided to be the most suitable scaffold for this binding study
(Figure 2). Although the even shorter peptide CII260-266 has
been shown to bind (although very weakly),18 it was believed
that modifications were likely to cause severe losses of Aq

binding.
Position 264 harbors the GalHyl moiety important for T-cell

recognition, and it has been shown that the moiety has minimal
influence on peptide binding to the Aq molecule.18 This position
was therefore kept constant and nonglycosylated in order to
simplify the synthesis of the peptide library. However, it should
be stressed that GalHyl plays an extremely important role in
T-cell responses and thus warrants further study regarding
autoimmune response. The known critical binding points, i.e.,
the anchor residues Ile260 and Phe263, were also left unchanged
to prevent complete loss of binding among members of the
peptide library. Consequently, five positions (Ala261, Gly262,
Gly265, Glu266, Gln267) in CII260-267 were chosen to be
systematically varied with SMD, referred to hereafter as
positions 1-5 (Figure 2).

In a first attempt to synthesize the library of selected peptides
considerable problems with aqueous solubility were experienced.
To circumvent these problems, lysine was introduced at the N
and C terminals of the peptide (N-Lys andC-Lys, respectively)
and tested for two commonly used CII-specific T-cell hybridoma
cell lines (HCQ.4 and HDB2, Table 1). The peptide with lysine
at the C terminal was recognized by both hybridoma. Conse-
quently, the peptide scaffold was elongated with a C-terminal
lysine to improve the solubility of the peptide library.54 We also
decided to NR-acetylate the resulting peptide scaffold and to
introduce a C-terminal amide to prevent loss of affinity to Aq

due to the presence of charged functional groups in the peptide
backbone (Figure 2).

Building Block Selection Using Multivariate Character-
ization. A representative set of peptides to synthesize and test
was selected using SMD in building block space using amino
acid descriptors. Several characterizations of amino acids have
been presented previously,38,55-59 and QSAR models of class I
and class II MHC peptides described in the literature have been
based on additive descriptors,47,48,53,59-61 selected property
descriptors,62 and thez-scale descriptors53,62 defined by Wold
and Sandberg.58 Thez-scale descriptors are derived on the basis
of experimentally determined characterization of the amino acids
followed by a subsequent principle component analysis (PCA)63

resulting in three to five principle properties (i.e., thez

Figure 1. Schematic illustration of the ternary complex of the collagen
glycopeptide CII260-267 presented by the mouse MHC class II
molecule Aq to the T-cell receptor. The peptide is anchored to the Aq

molecule with Ile260 in the P1 pocket and Phe263 in the P4 pocket.
The arrows indicate the amino acid positions investigated in this study.
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scales).56,58 Even though these descriptors have proven to be
successful in several QSAR models of peptide binding, initial
studies indicated that these descriptors were not sufficient for
our problem, particularly in mapping the flexibility of the amino
acids (data not shown). Furthermore, calculated molecular
descriptors have been shown to contain similar information as
experimentally derived ones.64 Hence, a new set of 28 calculated
molecular descriptors was selected to represent important
molecular properties for binding such as size, flexibility,
electronic description, lipophilicity, and hydrogen bond donor
and acceptor capabilities. The characterization was made using
semiempirical-based descriptors, indexes, and character counts,
and the number of descriptors was compressed to its main
principle properties using PCA in a manner similar to that for
the z-scale descriptors. During the cause of this work a new set
of amino acid descriptors was reported using a similar approach
of using theoretical descriptors and a subsequent PCA.65

The PCA of the molecular descriptors resulted in four to five
principal properties (four according to the Scree plot but five
with eigenvalues larger than 1) for which the most important
(t1-t3, describing 65% of the variation) were further used in
the modeling procedure as design variables (Figure 3). The first
component,t1, mainly separated amino acids based on size;
small amino acids such as glycine and alanine had high score
values, while large amino acids such as arginine and tryptophan
had lowt1 score values (Figure 3a,b). For the second and third
components (t2 and t3, respectively), separation was mainly
based on lipophilicity and flexibility, respectively. Three groups
of amino acids could also be distinguished in thet1 vs t2 score
plot (Figure 3a). Amino acids with hydrogen donor and acceptor
capabilities, such as asparagine, arginine, and glutamic acid,
are located in the upper-left quadrant. Aromatic amino acids
are found in the lower-left quadrant with aliphatic ones in the
lower-right quadrant. The two remaining principal properties,
t4 andt5, describe less generally applicable characteristics for
binding, e.g., separation of amino acids containing hydroxyl or
sulfur groups.

A comparative model of the Aq molecule20 indicates that there
is limited room for bulky side chains at positions 1-3
(corresponding to positions 261, 262, and 265), where small
residues (glycine and alanine) occur in CII. This implies that
the presence of large amino acids at any of these positions could
severely reduce the peptides’ ability to bind to the Aq molecule.
Therefore, the principal property design space was reduced for
these three positions to cover only amino acids of small to
moderate sizes. Five amino acids representing this space were
selected: Thr, Ser, Val, Met, and Ala (Figures 2 and 3a,c). For
positions 4 and 5 (corresponding to CII266 and CII267) there
was, according to the Aq model, no need for restrictions in the
chemical space. Therefore, the total property space was used
to cover as large an area as possible, and six amino acids were
chosen: Arg, Asn, Asp, Tyr, Ser, and Val (Figure 2). These
amino acids represented a maximum spread in characteristics
such as aliphatic/aromatic, hydrogen bond donors and acceptors,
size, and charged/neutral, as described by the three score values
in the principal property space (Figure 3a,c).

Library Selection Using D-Optimal Design.Virtual com-
binations yielding all possible variations of the selected amino
acids for the five positions in the scaffold resulted in a peptide
library consisting of 4500 peptides (53 × 62). D-optimal design66

was applied to this library to reduce it further. Each amino acid
at the five altered positions was represented by the three values
of the scaled principal properties,t1-t3, which when combined
into peptides resulting in 15 values representing a 15-
dimensional principal property space. A library of 22 peptides
with the most homogeneous distribution possible of selected
amino acids at each position was chosen out of the suggested
D-optimal designs while maximizing the volume spanned in
the principal property space. Two peptides with molecular
properties closest to the center of the principal property space
were added as center points. The procedure used to select these
24 peptides ensured that the chosen library had high chemical
diversity and information content (Table 2).

Synthesis, Biological Testing, and Preanalysis of Data.The
peptides of the library (Table 2) were synthesized on solid phase
as N- and C-terminal amides. Cleavage from solid support and
purification by reverse-phase HPLC rendered the pure products,
hereafter referred to as1-22 and CP1-CP2. The binding

Figure 2. Peptide scaffold used to study molecular property preferences for peptide binding to the Aq MHC class II molecule based on the minimal
CII glycopeptide with retained T-cell response (CII260-267). Five positions in the scaffold were varied by SMD, and the effects were studied.
Major anchor residues (positions 260 and 263) were left unchanged. The nonmodified lysine residue was used in position 264, and an additional
lysine was added to the C-terminal for solubility purposes. The arrows indicate the amino acid sets selected for incorporation at each position.

Table 1. Amino Acid Sequences of N- and C-Terminally Extended Peptides and Resulting T-Cell Responses

position hybridomaa

peptide 259 260 261 262 263 264 265 266 267 268 HDB2 HCQ4

N-Lys Ac-Lys Ile Ala Gly Phe Lys Gly Glu Gln-NH2 + -
C-Lys Ac-Ile Ala Gly Phe Lys Gly Glu Gln Lys-NH2 + +
CII260-267b Ac-Ile Ala Gly Phe Lys Gly Glu Gln-NH2 + +
a + refers to an equally strong response to the corresponding longer peptide CII259-275, and- refers to no response at the tested concentrations.

b Included as reference peptide.
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strength of the peptides to the MHCII Aq molecule was studied
in a competitive assay in which the peptides were evaluated
for their ability to prevent the binding of a biotinylated CLIP
reference peptide to Aq-transfected cells. The test peptides were
incubated at seven different concentrations (750, 250, 83, 28,
9, 3, and 1µM; designated concentrations 1-7, respectively)
in duplicate, and the experiments were repeated twice. Structure-
activity relationships were evaluated using the % inhibition at
different concentrations of the peptides as the biological
response.

The partial least-square projections to latent structures (PLS)
method67,68 has been the most commonly used regression
method for developing QSAR models of peptides binding to
class I and class II MHC molecules,47,48,53,59-62 although a recent
publication has shown promising QSAR results with support
vector machine regression.69 Here, the 15 principal property
values used for the library selection, i.e., the combination of
the PCA score valuest1-t3 for all the peptides (theX matrix),
were correlated to the biological response (theY matrix) by
PLS regression.

The analysis of theX andY data revealed that the responses
at concentrations 2-4 (i.e., 250, 83, and 28µM) contained the
most information, since most peptides did not bind at the lower
concentrations 5-7 and that solubility and/or toxicity problems
were detected for some peptides at the highest concentration
(750µM, concentration 1). The response block (concentrations

2-4) had a linear relationship to the logarithm of the corre-
sponding concentration, and nontransformed responses gave
similar results as the logit-transformation (cf. pIC50). The
response values were scaled to unit variance, which gave results
similar to those for the Pareto scaling. Single, duplicate, and
quadruplet samples showed good reproducibility both in and
between experiments except for run 2 of peptides1-9 where
the results deviated from the others and hence were excluded
from further analysis. The most robust models were obtained
when averages of duplicate samples were used as the biological
responses. Therefore, in the final QSAR model the biological
responses of the peptides were represented by the average
percentage inhibition of the pairs of duplicate samples at
concentrations 2-4 (referred to as Y2, Y3, and Y4) except that
peptides1-9 were each represented by a single duplicate sample
average (Table 2). Peptides7 and9 and the two center peptides
(CP1 and CP2) yielded deviating data because of solubility
problems and/or toxicity to the cells in the binding assay and
were not included in the modeling.

QSAR models of peptides binding to class I and class II MHC
molecules using PLS regression have been reported including
only linear terms47,48,53,60,62but also linearandcross-terms that
account for interactions between side chains at relative positions
1-2 and 1-3.48,59,61A comparison of the two models based on
the data in this study revealed identical interpretation of the
linear terms when considering the PLS weight vectors (regres-

Figure 3. Score (a, c) and loading plots (b, d) resulting from PCA of the 20 coded amino acids described by 28 molecular descriptors. First versus
second component plots are visualized in (a) and (b), while first versus third component plots can be seen in (c) and (d). Amino acids indicated in
red (Met, Ala, Thr) and green (Val, Ser) were chosen as building blocks for the variations at positions 1-3. The larger principal property space
covered by the building blocks in blue (Arg, Asn, Tyr, Asp) and green (Val, Ser) was used for positions 4 and 5. Explanations of the molecular
descriptor abbreviations in (b) and (d) are given in the Experimental Section.
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sion coefficient of 1.0) and a similar pattern of the normal
probability plot of the residuals. The model statistics showed
that the inclusion of the cross-terms gave a slightly higherR2Y
(∆R2 ) +0.05) than the model based on only the linear terms
but a much worseQ2 value (∆Q2 ) -0.27). Exclusions of cross-
terms with low model coefficients improved theQ2 value but
not better than the linear model (∆Q2 ) -0.03). It appears that
for our data inclusion of cross-terms did not improve the models
significantly. Interestingly, the only other study, to our knowl-
edge, for which interaction terms between side chains in a QSAR
model for MHC class II molecules have been investigated
resulted in the same conclusion.48

QSAR Model. The final linear PLS model showed a good
correlation between the experimental and calculated inhibition
values (Figure 4). This two-component model explained 66%
of the variation in the biological response (R2

Y2 ) 0.59; R2
Y3

) 0.70;R2
Y4 ) 0.70) with a cross-validatedQ2 of 43% (Q2

Y2

) 0.37;Q2
Y3 ) 0.47;Q2

Y4 ) 0.45). The dModX plot and the
normal probability plot of the residuals did not reveal any
outliers.

The QSAR model was validated and tested for its predict-
ability using an external test set. The affinity to Aq was predicted
by the QSAR model for the 3 200 000 possible virtual peptides.
Three clusters, each consisting of 5000 peptides predicted to
have high, average, and low Aq affinity, can be seen in the PLS
discriminant analysis (PLS-DA) plot (Figure 5). Most library
peptides belonged to the class of peptides predicted to have
average affinities, while several were predicted to have low
affinity and only one was found in the high-affinity region
(peptide 20), indicating that there is scope for designing
improved binders. Two peptides from each class (high-,
medium-, and low-ranked binders) were selected as an external
test set (Figure 5 and Table 3). These six peptides, referred to
asV1-V6, were synthesized and tested for binding strength to
Aq. These validation peptides were tested on a separate, later
occasion with a different setup of biological material and
modified protocol compared to the peptides used to build the

QSAR model. Hence, the binding data could not be directly
compared in terms of percentage inhibition, so we determined
which of the three classes (i.e., high, medium, or low predicted
affinity) each of the peptides belonged to and also ranked them
relative to each other on the basis of the biological binding data.

The model successfully distinguished binders from nonbinders
(Table 3). All the peptides that were predicted to bind with either
high or average affinity to Aq (peptidesV1-V4) did bind to
the Aq molecule, while the peptides predicted to have the lowest
affinity (V5 and V6) showed no response at all. The highly
scored peptideV1 was found to give the strongest measured
response. The other highly scored peptideV2 and the peptides
predicted to have average affinity (V3 andV4) displayed similar

Table 2. Amino Acid Sequences and Aq Binding Data for the Members of the Peptide Library Used for QSAR Modeling

varied position inhibition (%)b

peptidea Pos1 Pos2 Pos3 Pos4 Pos5 Y2 Y3 Y4

1 Ac-Ile Met Met Phe Lys Met Ser Asp Lys-NH2 30/- 17/- 4/-
2 Ac-Ile Met Met Phe Lys Val Arg Arg Lys-NH2 74/- 52/- 36/-
3 Ac-Ile Met Met Phe Lys Thr Asp Val Lys-NH2 16/- 24/- 10/-
4 Ac-Ile Met Thr Phe Lys Met Tyr Val Lys-NH2 48/- 40/- 13/-
5 Ac-Ile Met Thr Phe Lys Ala Val Tyr Lys-NH2 72/- 59/- 47/-
6 Ac-Ile Met Ser Phe Lys Thr Arg Asp Lys-NH2 54/- 27/- 15/-
7 Ac-Ile Val Val Phe Lys Ser Arg Tyr Lys-NH2 - - - - - -
8 Ac-Ile Val Ala Phe Lys Thr Val Val Lys-NH2 41/- 27/- 22/-
9 Ac-Ile Val Thr Phe Lys Val Asn Asn Lys-NH2 - - - - - -

10 Ac-Ile Val Ser Phe Lys Ala Tyr Arg Lys-NH2 51/39 60/61 49/47
11 Ac-Ile Ala Met Phe Lys Met Arg Ser Lys-NH2 77/78 61/63 40/38
12 Ac-Ile Ala Met Phe Lys Ser Val Asn Lys-NH2 49/50 32/29 18/19
13 Ac-Ile Ala Val Phe Lys Met Val Arg Lys-NH2 68/70 54/59 40/42
14 Ac-Ile Ala Ala Phe Lys Ala Asp Ser Lys-NH2 47/53 31/36 18/31
15 Ac-Ile Ala Thr Phe Lys Thr Tyr Tyr Lys-NH2 70/67 58/54 38/21
16 Ac-Ile Thr Met Phe Lys Met Asp Arg Lys-NH2 62/61 46/38 25/26
17 Ac-Ile Thr Met Phe Lys Val Val Tyr Lys-NH2 59/46 50/42 35/32
18 Ac-Ile Thr Val Phe Lys Val Tyr Asn -NH2 56/50 41/36 24/23
19 Ac-Ile Thr Thr Phe Lys Ser Ser Ser Lys-NH2 20/13 6/2 6/-3
20 Ac-Ile Thr Ser Phe Lys Met Arg Tyr Lys-NH2 75/80 61/69 48/50
21 Ac-Ile Ser Ala Phe Lys Thr Asn Arg Lys-NH2 84/75 56/61 40/42
22 Ac-Ile Ser Thr Phe Lys Ala Arg Val Lys-NH2 70/74 56/58 39/39
CP1 Ac-Ile Val Val Phe Lys Val Asp Asp Lys-NH2 - - - - - -
CP2 Ac-Ile Val Ala Phe Lys Val Ser Asp Lys-NH2 - - - - - -

a Peptides1-22 were selected by D-optimal design whileCP1 andCP2 represented center points.b % inhibition in which the average was obtained from
duplicate samples in two separate runs for concentrations Y2, Y3, and Y4 corresponding to 250, 83, and 28µM, respectively. Single dash (-) indicates that
data from run 2 for peptides1-9 were excluded because they were deviant. Double dashes (- -) indicates deviating data due to solubility and/or toxicological
problems.

Figure 4. Calculated versus experimentally determined inhibition
values for one of the three responses (Y4) used in the multi-Y PLS
regression. The QSAR model was based on 15 principal property values
(t1-t3 at positions 1-5) for 20 peptides, and the three biological
responses were represented as % inhibition at three different peptide
concentrations (Y2, Y3, Y4).
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binding preferences and had lower binding affinity to Aq than
V1. The results of the external validation confirmed the
predictability of the QSAR model obtained.

A comparison of our model with the QSAR models developed
for other mouse MHC class II molecules (I-Ab, I-Ad, I-Ak, I-As,
I-Ed, and I-Ek)48 reveals that theR2 andQ2 are lower for our
model (0.66 and 0.43 compared to 0.99 and 0.83). However,
R2 andQ2 are internal validation criteria and external test sets
are a superior alternative for evaluating the model quality. The
predictive power of the models for the six class II molecules
presented by Hattotuwagama et al. showed great variation but
had similar highR2 andQ2 values of the models, where the Ab

model had a very high predictivity while that of Ek was very
poor.48 Our model successfully managed to predict the binding
strength of six new peptides despite the relatively low internal
statistical terms.

The interpretation of the influence of the different amino acid
properties at the different positions is presented in detail below.
The regression coefficients of the different peptide positions
showed the same pattern for all three investigated concentrations,
and the regression weight values (w × c plot) can be seen in
Figure 6. A design guide of preferred directions in the score
plots of the 20 amino acids is provided in the Supporting
Information.

1. Interpretation of the QSAR Model. Positions 4 and 5
had the strongest influence on the peptide binding to Aq

according to the regression model, as shown by their dominating
regression weight values (Figure 6). The variables describing
size and flexibility were the main contributors for position 4,
as botht1 and t3 were strongly negatively correlated with the
response. For a good binder the amino acid at position 4 should
preferably be large and flexible, e.g., arginine. The original
molecular descriptors responsible for these features were
revealed, based on their PCA loading values, to be volume,
surface area, and the Kier flexibility indexes 1K, 2K, and PHI
(Figure 3). In addition, the positively correlated regression
weight for t2 indicated that hydrogen bond donors/acceptors
could be preferred over more lipophilic amino acids. Although
the side chain of this residue has been shown to be very
important for T-cell stimulations,25 our model shows that it also
influences binding to the Aq. By comparison of the relative
position in the principal property space of glutamic acid found
in rat CII with that of aspartic acid found in mouse CII, it can
be seen that glutamic acid is preferred to aspartic acid in position

4. This correlates well to experimental results suggesting that
rat CII binds more strongly to the Aq molecule than mouse CII70

and correlates with the finding that exchanging glutamic acid
by aspartic acid at position 266 in CII256-270 resulted in a
more than 10-fold reduction in binding strength to Aq.20

In position 5, just as in position 4, large and to some extent
flexible amino acids were strongly preferred because thet1 and
t3 variables were negatively correlated with the response (Figure
3 and 6). Interpretation of the PCA loading vectorsp1 andp3
showed that the dominating molecular descriptors, as for position
4, were volume, surface area, and the Keir flexibility indexes.
The lipophilicity, as explained byt2, had a moderate impact
on binding, and the regression weight value indicates a binding
preference for hydrophobic and aromatic amino acids, e.g.,
phenylalanine and methionine.

In position 3, the regression weight values oft2 and t3
variables were of moderate sizes and negatively correlated with
the response. The dominating original molecular descriptors
were LOGPC, AM1SM2, and the Keir indexes, indicating
preferences for hydrophobic and flexible amino acids (Figure
3). However, the size of the side chains does not appear to be
an important feature for binding within the limited studied
chemical space (cf. size of Pos3:t1 in Figure 6). The most
suitable coded amino acids for this position belong to any of
the two adjacent clusters containing isoleucine, leucine, valine,
methionine, or maybe even the aromatic phenylalanine.

The PLS regression weight values for the side chain properties
at positions 1 and 2 described byt1-t3 were low to medium,
indicating that the variations made at these positions had no
major effect on the binding of the peptide to the Aq molecule.
All amino acids within the investigated area in the principal
property space were tolerated. However, the moderate positive
weight values oft1 andt3 indicate that small rigid amino acids
were preferred (Figure 3), while the polarity of the amino acids
did not seem to matter (cf. Pos1:t2 and Pos2:t2 in Figure 6).
The preferred amino acids at these positions correspond well
with those naturally occurring in the CII peptide, i.e., Ala261
and Gly262.

2. Summarizing the Model. Preferred amino acids and
characteristics of the studied positions are summarized in Figure
7. A molecular property binding motif was discernible and easily
transferred to sequence binding motifs. Besides the previously
identified CII260 and CII263 anchor positions, positions 4 and
5 (corresponding to Glu266 and Gln267 in CII) were the most
important for peptide binding to the Aq molecule. Residues at
these two positions should preferably be large and flexible. In
addition, the model indicates that residues at position 4 should
contain hydrogen bond donors and acceptors to promote binding,
while residues at position 5 should be hydrophobic. At positions
1 and 2 (corresponding to Ala261 and Gly262 in CII) small
and rigid amino acids are favored, even though moderately sized
amino acids were tolerated. Finally, position 3 (corresponding
to Gly265 in CII) should harbor aliphatic, hydrophobic residues
for optimal binding. These proposed preferences were supported
by the strong Aq binding of peptideV1 from the external test
set. For V1 the amino acids at all positions fulfilled the
suggested requirements: Thr at position 1, Ala at position 2,
Ile at position 3, Arg at position 4, and Trp at position 5. It
should be noted that this designed peptide has no amino acids
in common at any of the five varied amino acid positions with
the octamer originating from CII. On the other hand, peptide
V5, which was predicted to be a poor binder, had unfavorable
amino acids at all of the investigated positions, effectively
preventing its binding to the Aq molecule. The Aq binding motif

Figure 5. PLS-DA score plot (t1 versust2) based on three classes of
virtual peptides predicted by the QSAR model to be strong, medium,
and weak binders to the Aq molecule. The 5000 highest ranked peptides
are located to the right (gray). The 5000 closest to the average are
located in the center (pink), while the 5000 lowest ranked are located
to the left (blue) in the plot. The six peptides constituting the external
test set are marked with black diamonds. The distribution of the peptides
building up the QSAR model is illustrated by green triangles, which
show their predicted PLS-DA score values (tPS1 and tPS2).
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indicated by the QSAR model could be used in future studies
to predict the binding propensity of other self-peptides presented
by the disease-associated Aq molecule. The results of this study
do not support the hypothesis that the KXXS motif, which has
been postulated to be associated with Aq-restricted antigenicity,28

is important for binding. Similar results were also seen in a
recent study reporting significant features for T-cell recognition,
where the GalHyl-X-E motif was identified to be extremely
important for the T-cell response.25 The QSAR models of
peptides binding the six mouse alleles presented by Hattotu-
wagama et al. did not show a common theme for favored and
disfavored amino acid residues.48 A comparison with the
interpretation of our model did not reveal any clear common
favored peptide binding pattern between Aq and any of the six
other modeled mouse MHC class II molecules. These results
are not surprising because MHC molecules are known to have
diverse characteristics in presenting peptide antigens.

The longer immunodominant part of CII, i.e., CII256-270,
binds to both of the MHC class II molecules Aq (mouse) and
DR4 (human).20,71,72It has been proposed that the DR4-binding
motif of CII256-CII270 is shifted by three amino acids
compared to that of Aq, resulting in Phe263 and Glu266 being
at the anchor positions instead of Ile260 and Phe263.71,73 A
comparison of the suggested DR4 peptide-binding motifs33,34

with our results regarding the Aq-binding motif supports this
hypothesis, but too few amino acids have been altered within
the DR4 epitope to warrant further comparative conclusions.

No experimentally determined 3D structure of the Aq

molecule is available, but indications about the properties of
the Aq binding site can be obtained from the postulated preferred

molecular properties of the peptides (Figure 7). In addition to
earlier indications of two large hydrophobic binding pockets
(P1 and P4),20 the preferences for small, rigid amino acids in
the P2 and P3 binding pockets suggest that they are of limited
size. One could also speculate that the presence of large amino
acids in P2 and/or P3 could prevent the anchor residues from
reaching their binding pockets. In P6 the QSAR model implies
that there is a hydrophobic area in the Aq molecule. The P7
pocket appears to be rather large with some polar surface area,
while the P8 pocket is indicated to be a large, hydrophobic
binding area. When these preferences were compared with the
3D comparative model of the Aq molecule,20 the models
matched remarkably well.

In the preferred design directions, as indicated by the QSAR
model, there are few amino acids with required characteristics
among the coded amino acids. More suitable non-natural amino
acids could possibly be identified to further enhance the binding
to the Aq molecule, which could also increase the metabolic
stability of the peptides. In addition, the information presented
in Figure 7 could be used to develop novel peptide mimetics
based on the proposed preferred molecular properties. New
modified peptides with variations in physicochemical properties
and binding strength would be highly valuable in the develop-
ment of effective immunization procedures for use in future
vaccination studies.

Conclusions

A peptide library was designed, synthesized, and evaluated
for binding to the mouse MHC class II molecule Aq. The SMD
approach made it possible to select a chemically diverse and
informative library of 22 peptides and two center points out of
3 200 000 possible peptide combinations. This highly reduced
set of peptides, together with inhibition data from a cell-based
competitive assay at three different concentrations of the
peptides, resulted in a high-quality QSAR model based on PLS
modeling that was successfully validated with an external test
set of six peptides.

A molecular property binding motif for peptides binding to
the mouse MHC class II molecule Aq was established on the
basis of interpretation of the QSAR model of the five varied
positions. The C-terminal positions of the peptide scaffold
(corresponding to CII266 and CII267, respectively) appeared
to have the strongest influence on the Aq/peptide interaction,
while the positions corresponding to CII261 and CII262 are the
ones that have the least influence according to the QSAR model.
In addition, the model provided indications of the characteristics
of the binding site of the Aq molecule and the findings in the
present investigation correlated well with a comparative 3D
model of the protein.

The QSAR model provides novel information and insight
regarding the Aq molecule/peptide component of the ternary Aq,
glycopeptide, and T-cell receptor complex. This information

Table 3. Amino Acid Sequences and Aq Binding Data for the Six Peptides Used for External Validation of the QSAR Model

varied positions Aq bindinga

peptide Pos1 Pos2 Pos3 Pos4 Pos5 predb foundc rankd

V1 Ac-Ile Thr Ala Phe Lys Ile Arg Trp Lys-NH2 + + 1
V2 Ac-Ile Ile Gly Phe Lys Ala Arg Met Lys-NH2 + +, m 2
V3 Ac-Ile Ile Gln Phe Lys Thr Leu Arg Lys-NH2 m +, m 2
V4 Ac-Ile Thr Asn Phe Lys Gly Ser Arg Lys-NH2 m -, m 4
V5 Ac-Ile Tyr Met Phe Lys Glu Pro Gly Lys-NH2 - - 5
V6 Ac-Ile Gln Met Phe Lys Arg Ala Gly Lys-NH2 - - 6

a Definitions: +, strong binders; m, medium binders;-, poor binders.b Predicted class membership by the PLS-DA model.c Class membership as
determined from binding data.d Relative ranking of peptides based on binding data.

Figure 6. PLS weight values (w × c) for the QSAR model based on
15 principal property values (t1-t3 at positions 1-5) and three
biological responses represented as % inhibition at three different
peptide concentrations (Y2, Y3, Y4).
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could facilitate attempts to develop new treatments of autoim-
mune diseases such as RA.

Experimental Section

Theoretical Characterization of Amino Acids. The structures
of the 20 naturally occurring amino acids were generated using
Spartan software74 and subsequently characterized by 11 molecular
descriptors including properties related to size (surface area,
molecular weight, volume), electronic features (dipole, HOMO,
LUMO, maximum charge, minimum charge, partial charge of c-R-
c1), and lipophilicity (logP, SM2) extracted from semiempirical
AM1 calculations within Spartan software.74 In addition to these
3D-based descriptors, 17 descriptors including functional group
counts (numbers of OH, NH, NH2, SH, CO, other N{N × N} and
other S{N × S} groups), numbers of five-, six-, and nine-membered
rings, number of hydrogen donors{NHD} and acceptors{NHA},
indexes (path 1 Keir shape index-1K, path 2 Keir shape index{2K},
Kier flexibility index {PHI}), and saturation ratios (SatGrade, NAT/
SKC) were computed using the Dragon software.75 A table of the
descriptors is given in the Supporting Information. These molecular
descriptors were compressed by PCA63,76,77 using SIMCA soft-
ware.78 The number of significant principal components was decided
using their eigenvalues, a Scree plot, and chemical interpretation
of the loadings for the corresponding components.

Statistical Molecular Design and Data Analytical Methods.
1. Selection of Peptides.Each amino acid at the altered positions
was represented by the corresponding values of the scaled principal
properties score vectors. Peptides resulting from different combina-
tions of amino acids yielded the structure descriptor matrix (X).
The score values were then scaled to unit variance for each
dimension to avoid bias in the weighting of the varied positions or
molecular properties due to differences in variance. D-optimal
design50,66,79was performed using MODDE software80 to generate
15 libraries, each with 22 peptides. The selection by D-optimal
design maximized the volume spanned in the principal property
space through maximization of the determinant (Det) of theX′X
matrix. The final library to synthesize was chosen from the 15

generated libraries based on G efficiency, Log(Det ofX′X),
Norm.log(Det ofX′X), condition number, and the most homoge-
neous distribution of the selected amino acids at each position. The
50 peptides with the minimal Euclidean distance to the calculated
center point in the principal property space were calculated, and
two peptides were chosen as center points based on their synthetic
feasibility and added to the library of 22 peptides.

2. Projections to Latent Structures by Means of Partial Least-
Squares. The structure descriptor matrix (X), based on the
combination of PCA score values representing the molecular
properties of the amino acids, was related to the biological activity
response matrix (Y) using the PLS regression method.67,68The PLS
method maximizes the covariance between the latent variables of
theX andY matrixes (multi-Y) and correlates these latent variables
through linear combinations to a regression model. Even though it
is a linear method, a nonlinear relationship can be handled to some
extent through transformation ofY, inclusion of nonlinear terms,
and extraction of additional PLS components. The % inhibition at
several different concentrations (multi-Y), scaled to unit variance,
was used as the response. The use of correlated response variables
as a multi-Y matrix enhanced the stability and reliability of the
models because the biological data contained noise and, in some
cases, missing and deviating data. The quality of the model was
investigated by estimating the amounts of explained variation (R2)
and cross-validated predicted variation (Q2)81 using seven cross-
validation rounds. The validation of the final model was made by
using an external test set. The interpretation of the influence of the
different amino acid positions was based on the first PLS component
weight vector, which provides the best estimate of the variable
importance when only one response or highly correlated multire-
sponses are used.82 All PLS modeling was performed using SIMCA
software.78

Preanalysis of Biological Data. The X and Y data were
preanalyzed to determine relevant concentrations, scaling prefer-
ences, transformations, included model terms, and influence of the
experimental layout to assess the reproducibility of the assays and
to detect peptide outliers. Relevant concentrations as multi-Y and

Figure 7. Summary of the interpretation of the QSAR model illustrating the preferred and rejected amino acids and of molecular properties to
promote Aq binding. Pos1-Pos5 represent the five varied positions in the peptide scaffold, and suggested characteristics at corresponding positions
in the binding site of the Aq molecule (P2, P3, P6-P8) are also shown. Amino acids are represented by their conventional one-letter code.
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model terms to include in the final PLS-QSAR model and whether
the data should be logit-transformed and scaled to unit variance,
pareto-scaled or nonscaled, were assessed by considering the
amounts of variation explained by the resulting PLS models (R2),
their cross-validation values (Q2), and the normal probability plots
of the residuals. Three sets of model terms were investigated: only
linear terms, linear and all cross terms for relative positions 1-2
and 1-3, and linear and selected cross terms (1-2 and 1-3) with
PLS coefficients larger than 0.05 for all investigated concentrations.
In order to test the biological effects of the entire peptide library
including center points and reference peptides as duplicated samples,
the experiment was divided and tested in three different experiments
(experiment 1, peptides1-9; experiment 2, peptides10-18;
experiment 3, peptides19 CPs). The experiments were then
repeated (runs 1 and 2), resulting in four samples/response curves
for each peptide. PCA of theY variables, for all four samples
(duplicated samples and duplicated runs), was used to assess the
reproducibility both in and between experiments. Standard devia-
tions were calculated, and a PLS with indicator variables was
performed to identify deviating experiments. Thus, theX matrix
was extended by six columns with either 1 or 0 as indicator variable,
representing belonging or not belonging to a certain experiment
number and run. Deviating data due to solubility problems and/or
toxicity to cells used in the binding assay were visually detected
when running the FACS analysis and/or as outliers in the PCA.

External Validation. A representative test set for external
validation was chosen from all possible 3 200 000 in silico generated
peptides, based on the coded amino acids. The virtually combined
peptides were represented by their values of the scaled principal
properties score vectors, and the established QSAR model equation
was used to predict their binding strength (% inhibition). Three
ranking algorithms were then used to sort and select three sets of
peptides: the 5000 predicted to be the strongest binders, the 5000
predicted to have the closest to average binding strength, and the
5000 predicted to be the weakest binders.83 Separation of the three
classes of predicted peptides was enhanced using PLS-DA, and
selections were made from each class. The test set was synthesized
and biologically evaluated for Aq binding.

Solid-Phase Peptide Synthesis.The peptides were synthesized
in a manually operated reactor or a Pioneer peptide synthesis system
(Applied Biosystems, The Netherlands), using standard solid-phase
peptide synthesis methodology on a Tentagel-S NH2 resin (Rapp
Polymere, Germany) in which the linker Fmoc-2,4-dimethoxy-4′-
(carboxymethyloxy)benzhydrylamine (Rink) was first coupled to
the resin. This rendered peptides as C-terminal amides after cleavage
from the resin.NR-Fmoc amino acids carrying standard side chain
protective groups (Bachem, Switzerland and Neosystem S.A.,
France, 4 equiv), as well as the Rink linker (4 equiv), were coupled
to the resin in dimethylformamide (DMF), which was predistilled
and used immediately or stored for a short time over 3 Å molecular
sieves. In the manually operated reactor diisopropyl carbodiimide
(DIC, 3.9 equiv) was used as a coupling reagent in the presence of
1-hydroxybenzotriazole (HOBt, 6 equiv). The progress of the
reaction was monitored by the naked eye using bromophenol blue
as an indicator.84 Alternatively, coupling reactions were performed
in the Pioneer peptide synthesis system utilizing 0.5 M HBTU and
0.5 M DIPEA as coupling reagents with UV monitoring, all
according to the manufacturer’s instructions. Fmoc protective groups
were removed after each coupling cycle using 20% piperidine in
DMF. After completion of the synthetic sequence, the N-terminal
of the peptides was acetylated by incubation with Ac2O/DMF (1:
2) for 1 h. The peptides were cleaved and deprotected by incubation
with TFA/H2O/thioanisole/ethanedithiol (35:2:2:1) for 3 h at 40
°C. Following repeated concentration from HOAc, the peptides were
precipitated from Et2O and the crude products were freeze-dried.
Purification by reversed-phase HPLC and freeze-drying gave the
homogeneous compounds (N-Lys, C-Lys, 1-22, CP1, CP2, V1-
V6). Analytical reversed-phase HPLC was performed using a
Kromasil C-8 column (250 mm× 4.6 mm, 5µm, 100 Å), elution
with a linear gradient of MeCN (0f 100% or 0f 80% over 60
min), balance H2O, both containing 0.1% TFA, and flow rate of

1.5 mL/min. Preparative reversed-phase HPLC was performed using
a larger Kromasil C-8 column (250 mm× 20 mm, 5µm, 100 Å)
with the same eluents but a flow rate of 11 mL/min. In both cases
the eluate was monitored by a UV detector at 214 nm. The identity
of the peptides was confirmed by MS and their purity (g95%) by
analytical HPLC.

Aq Binding Assay.The binding of peptides to Aq MHC class II
molecules was preformed in a competitive assay using flow
cytometry analysis. Briefly, the test peptides (1-22, CP1, CP2,
V1-V6) and a reference peptide were incubated in 96-well plates
at seven different concentrations (750, 250, 83, 28, 9, 3, and 1µM,
which are concentrations 1, 2, 3, 4, 5, 6, 7, respectively) for 2.5 h
at 37°C with a fixed concentration of biotinylated CLIP peptide
(5 µM) and M12Q 14-7 cells transfected with H-2Aq. After being
washed to remove excess peptide, the cells were stained with 0.2
µL of streptavidin-phycoerythrin (SAPE), which binds to the
biotinylated CLIP peptide. The phycoerythrin (PE) dye was detected
by flow cytometry analysis using FACSort (Becton Dickingson,
San Jose, CA) and Becton Dickingson software. The “% inhibition”
for each peptide was calculated from the gated mean fluorescence
by comparison with the fluorescence from the positive control (no
inhibiting peptide) after subtracting the signal from the negative
control (no biotinylated CLIP peptide). The experiment was
performed in duplicate and was repeated once. The biological
evaluation of the validation peptides was performed in a similar
way in duplicate but at a separate occasion and later than for the
designed peptide library. Since the reference peptide induced a weak
response, the validation peptides were subjected to an additional
binding study with a modified protocol.

Recombinant Aq molecules were captured by incubation at
4 °C overnight in a 96-well microtiter plate precoated with the mAb
Y3-P and blocked with PBS containing 2% low fat milk. After
washing, increasing concentrations of glycopeptides were added
and incubated for 48 h at room temperature together with a fixed
concentration of biotinylated CLIP peptide (“CLIPbio”, 2.5µM).
CLIPbio-MHC class II complexes were quantified using the
dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA) kit
system based on the time-resolved fluoroimmunoassay technique
with europium-labeled streptavidin (Wallac, Turku) according to
the manufacturer’s instructions. The six validation peptides (V1-
V6) and a reference peptide were tested at 0.8, 4, 20, 100, and
500 µM.

The full dose response curves for the second experiment were
used to classify the validation peptides and to rank them in terms
of relative binding strength.

Determination of T-Cell Hybridoma Responses.The response
of each T-cell hybridoma line, i.e., the amount of IL-2 secreted
following incubation with antigen-presenting spleen cells in the
various concentrations of glycopeptides (N-Lys and C-Lys) was
determined in a standard assay using the T-cell clone CTLL.85

Briefly, 5 × 104 hybridoma T cells were cocultured with 5× 105

syngeneic spleen cells and antigen in a volume of 200µL in 96-
well flat-bottom microtiter plates. After 24 h, 100µL aliquots of
the supernatants were removed and frozen to kill any transferred
hybridoma T cells. IL-2 sensitive CTLL T cells (1× 105/mL,
100 µL/well) were added to the thawed supernatant. The CTLL
cultures were incubated for 24 h, after which they were pulsed
with 1 µCi of [3H]thymidine and incubated for an additional
15-18 h. The cells were harvested on glass fiber sheets in a
Filtermate cell harvester (Packard Instruments, Meriden, CT), and
the amount of radioactivity in them was determined using a Matrix
96 directâ counter (Packard). All experiments were performed in
duplicate.
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(26) Bäcklund, J.; Treschow, A.; Bockermann, R.; Holm, B.; Holm, L.;
Issazadeh-Navikas, S.; Kihlberg, J.; Holmdahl, R. Glycosylation of
Type II Collagen Is of Major Importance for T Cell Tolerance and
Pathology in Collagen-Induced Arthritis.Eur. J. Immunol.2002, 32
(12), 3776-3784.

(27) Dzhambazov, B.; Nandakumar, K.; Kihlberg, J.; Fugger, L.; Holm-
dahl, R.; Vestberg, M. Therapeutic Vaccination of Active Arthritis
with a Glycosylated Collagen Type II in Complex with MHC Class
II Molecules.J. Immunol.2006, 176, 1525-1533.

(28) Jane-wit, D.; Yu, M.; Edling, A. E.; Kataoka, S.; Johnson, J. M.;
Stull, L. B.; Moravec, C. S.; Tuohy, V. K. A Novel Class II-Binding
Motif Selects Peptides That Mediate Organ-Specific Autoimmune
Disease in SWXJ, SJL/J, and SWR/J Mice.J. Immunol.2002, 169,
6507-6514.

(29) Hammer, J.; Bono, E.; Gallazzi, F.; Belunis, C.; Nagy, Z.; Sinigaglia,
F. Precise Prediction of Major Histocompatibility Complex Class II-
Peptide Interaction Based on Peptide Side Chain Scanning.J. Exp.
Med.1994, 180, 2553-2358.

(30) Pinilla, C.; Appel, J. R.; Houghten, R. A. Rapid Identification of
High Affinity Peptide Ligands Using Positional Scanning Synthetic
Peptide Combinatorial Libraries.BioTechniques1992, 13, 901-905.

(31) Sospedra, M.; Pinilla, C.; Martin, R. Use of Combinatorial Peptide
Libraries for T-Cell Epitope Mapping.Methods2003, 29 (3), 236-
247.

(32) Nino-Vasquez, J. J.; Allicorri, G.; Borras, E.; Wilson, D. B.; Valmori,
D.; Simon, R.; Martin, R.; Pinilla, C. A Powerful Combination: The
Use of Positional Scanning Libraries and Biometrical Analysis To
Identify Cross-Reactive T-Cell Epitopes.Mol. Immunol.2004, 40
(14-15), 1063-1074.

(33) Hammer, J.; Takacs, B.; Sinigaglia, F. Identification of a Motif for
HLA-DR1 Binding Peptides Using M13 Display Libraries.J. Exp.
Med.1992, 176, 1007-1013.

(34) Bolin, D. R.; Swain, A. L.; Sarabu, R.; Berthel, S. J.; Gillespie, P.;
Huby, N. J. S.; Makofske, R.; Orzechowski, L.; Perrotta, A.; Toth,
K.; Cooper, J. P.; Jiang, N.; Falcioni, F.; Campbell, R.; Cox, D.;
Gaizband, D.; Belunis, C. J.; Vidovic, D.; Ito, K.; Crowther, R.;
Kammlott, U.; Zhang, X.; Palermo, R.; Weber, D.; Guenot, J.; Nagy,
Z.; Olson, G. L. Peptide and Peptide Mimetic Inhibitors of Antigen
Presentation by HLA-DR Class II MHC Molecules. Design, Structure-
Activity Relationships, and X-ray Crystal Structures.J. Med. Chem.
2000, 43, 2135-2148.

(35) Ettouati, L.; Salvi, J. P.; Trescol-Biemont, M. C.; Walchshofer, N.;
Gerlier, D.; Rabourdin-Combe, C.; Paris, J. Substitution of Peptide
Bond 53-54 of HEL(52-61) with an Ethylene Bond Rather Than
Reduced Peptide Bond Is Tolerated by an MHC-II Restricted T Cell.
Pept. Res.1996, 9 (5), 248-253.

(36) de Haan, E.; Wauben, M.; Grosfeld-Stulemeyer, M.; Moret, E.
Structure-Based Design and Evaluation of MHC Class II Binding
Peptides.Biologicals2001, 29 (3-4), 289-292.

(37) Linusson, A.; Wold, S.; Norden, B. Statistical Molecular Design of
Peptoid Libraries.Mol. DiVersity 1998, 4 (2), 103-114.

(38) Larsson, A.; Johansson, S. M. C.; Pinkner, J. S.; Hultgren, S. J.;
Almqvist, F.; Kihlberg, J.; Linusson, A. Multivariate Design Synthesis
and Biological Evaluation of Peptide Inhibitors of FimC/FimH
Protein-Protein Interactions in Uropathogenic Escherichia Coli.J.
Med. Chem.2005, 48, 935-945.

2058 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 9 Holm et al.



(39) Flower, D. R. Towards in Silico Prediction of Immunogenic Epitopes.
Trends Immunol.2003, 24 (12), 667-674.

(40) Sette, A.; Buus, S.; Appella, A.; Smith, J. A.; Chesnut, R.; Miles,
C.; Colon, S. M.; Grey, H. M. Prediction of Major Histocompatibility
Complex Binding Regions of Protein Antigens by Sequence Pattern
Analysis.Proc. Natl. Acad. Sci. U.S.A.1989, 86 (9), 3296-3300.

(41) Rammensee, H.-G.; Bachmann, J.; Emmerich, N. P. N.; Bachor, O.
A.; Stevanovic, S. SYFPEITHI: Database for MHC Ligands and
Peptide Motifs.Immunogenetics1999, 50, 213-219.

(42) Reche, P. A.; Glutting, J.-P.; Reinherz, E. L. Prediction of MHC
Class I Binding Peptides Using Profile Motifs.Hum. Immunol.2002,
63, 701-709.

(43) Reche, P. A.; Glutting, J.-P.; Zhang, H.; Reinherz, E. L. Enhancement
of the RANKPEP Resource for the Prediction of Peptide Binding to
MHC Molecules Using Profiles.Immunogenetics2004, 56, 405-
419.

(44) Burden, F. R.; Winkler, D. A. Predicitve Bayesian Neural Network
Models of MHC Class II Peptide Binding.J. Mol. Graphics Modell.
2005, 23, 481-489.

(45) Bhasin, M.; Raghava, G. P. S. SVM Based Method for Predicting
HLA-BRB1*0401 Binding Peptides in an Antigen Sequence.Bio-
informatics2004, 20 (3), 421-423.

(46) Salomon, J.; Flower, D. R. Predicting Class II MHC-Peptides
Binding: A Kernel Based Approach Using Similarity Scores.BMC
Bioinf. 2006, 7, 501.

(47) Doytchinova, I. A.; Flower, D. R. Towards the in Silico Identification
of Class II Restricted T-Cell Epitopes: A Partial Least Square
Iterative Self-Consistent Algorithm for Affinity Prediction.Bioin-
formatics2003, 19 (17), 2263-2270.

(48) Hattotuwagama, C. K.; Toseland, C. P.; Guan, P.; Taylor, D. J.;
Hemsley, S. L.; Doytchinova, I. A.; Flower, D. R. Toward Prediction
of Class II Mouse Major Histocompatibility Complex Peptide Binding
Affinity: In Silico Bioinformatic Evaluation Using Partial Least
Squares, a Robust Multivariate Statistical Technique.J. Chem. Inf.
Model.2006, 46, 1491-1502.

(49) Wei, H.-Y.; Tsai, K.-C.; Lin, T.-H. Modeling Ligand-Receptor
Interaction for Some MHC Class II HLA-DR4 Peptide Mimic
Inhibitors Using Several Molecular Docking and 3D QSAR Tech-
niques.J. Chem. Inf. Model.2005, 45, 1343-1351.

(50) Baroni, M.; Clementi, S.; Cruciani, G.; Kettaneh-Wold, N.; Wold,
S. D-Optimal Design in QSAR.Quant. Struct.-Act. Relat.1993,
12, 225-231.
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